Skip to main content
Log in

Comparison of Interlaminar Fracture Toughness in Unidirectional and Woven Roving Marine Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper investigates the effect of fibre lay-up and matrix toughness on mode I and mode II interlaminar fracture toughness (GIc and GIIc) of marine composites. Unidirectional and woven roving fibres were used as reinforcements. Two vinyl ester resins with different toughness were used as matrices. Results from both modes showed toughness variation that is consistent with matrix toughness. Values of GIc were not significantly influenced by fibre lay-up except at peak load points in the woven roving/brittle-matrix composite. Each peak load point, caused by interlocked bridging fibres, signified the onset of unstable crack growth. For unidirectional specimens, crack growth was stable and GIc statistically more reliable than woven roving specimens, which gave fewer GIc values due to frequent unstable crack growth. Mode II tests revealed that, except for crack initiation, GIIc was higher in woven roving composites. This was due to fibre bridging, perpendicular to the crack growth direction, which encouraged stable crack growth and increased energy absorption. Mode II R-curves were obtained for the woven roving specimens. These R-curves provide additional information useful for characterising delamination resistance. The paper concludes that composites with woven roving fibres show similar mode I delamination characteristics to the unidirectional composites; but their mode II delamination characteristics, after crack initiation, are quite different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proc. 6th International Conference, Marine Applications of Composite Materials, Florida, March 1996.

  2. Shenoi, R. A. and Wellicome, J. F. (eds.), Composite Materials in Marine Structures, Cambridge Ocean Technology Press, Cambridge, 1993.

    Google Scholar 

  3. Davies, P. and Lemoine, L. (eds.), 'Nautical Construction with Composite Materials', Proc. 3rd IFREMER Conference, Paris, Dec. 1992.

  4. Gutierrez, J., Le Ley, F., and Hoarau, P., 'A Study of the Aging of Glass Fibre Resin Composites in a Marine Environment', ibid., pp. 338‐346.

  5. Barnouin, B. and Renaud, P., 'Damage Observed During Inspection of Composite Pleasure Boats', ibid., pp. 389‐393.

  6. European Structural Integrity Society (ESIS), Protocols for Interlaminar Fracture Testing of Composites, 1993.

  7. ASTM D5528-94a, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.

  8. Davies, P., 'Fracture of Marine Composites', in E. Armaois (ed.), Fracture of Composites, Trans. Tech. Publications, Zurich, 1996, pp. 583‐596.

    Google Scholar 

  9. Sela, N. and Ishai, O., 'Interlaminar Fracture Toughness and Toughening of Laminated Composite Materials: A Review', Composites 20(5), 1989, 423‐435.

    Google Scholar 

  10. Hibbs, M. F., Tse, M. K., and Bradley, W. L., 'Interlaminar Fracture Toughness and Real-Time Fracture Mechanism of Some Toughened Graphite/Epoxy Composites', Toughened Composites, ASTM STP 937, 1987, 115‐130.

  11. Hunston, D. L., 'Composite Interlaminar Fracture: Effect of matrix energy', Composites Technology Review 6, 1984, 176‐180.

    Google Scholar 

  12. Madhukar, M. S. and Drzal, L. T., 'Fiber-Matrix Adhesion and Its Effects on Composite Mechanical Properties: IV. Mode I and Mode II Fracture Toughness of Graphite/Epoxy Composites', Journal of Composite Materials 26(7), 1992, 936‐968.

    Google Scholar 

  13. Albertsen, H., Ivens, J., Peters, P., Wevers, M. and Verpoest, I., 'Interlaminar Fracture Toughness of CFRP Influenced by Fibre Surface Treatment: Part I. Experimental Studies', Composites Science and Technology 54, 1995, 133‐145.

    Google Scholar 

  14. Johnson, W. S. and Mangalgiri, P. D., 'Investigation of Fiber Bridging in Double Cantilever Beam Specimens', Journal of Composites Technology and Research 9, 1987, 10‐13.

    Google Scholar 

  15. Bradley, W. L., 'Relationship of Matrix Toughness to Interlaminar Fracture Toughness', in K. Friedrich (ed.), Application of Fracture Mechanics to Composite Materials, Elsevier, Amsterdam, 1989.

    Google Scholar 

  16. Davies, P., 'Delamination', in I. K. Partridge (ed.), Advanced Composites, Elsevier, London, 1989, pp. 303‐329.

    Google Scholar 

  17. Burchill, P. J. and Pearce, P. J., 'Epoxy Acrylate-Based Resin', in J. C. Salamone (ed.), Polymeric Materials Encyclopaedia, Vol. 3, CRC Press, New York, 1996, pp. 2204‐2210.

    Google Scholar 

  18. Dow Plastics, Derakane Epoxy Vinyl Ester Resins, Technical Product Information.

  19. Hull, D., An Introduction to Composite Materials, Cambridge University Press, Cambridge, 1981.

    Google Scholar 

  20. Irwin, G. R. and Kies, J. A., Journal of Welding 33, 1954, 193.

    Google Scholar 

  21. Davies, P. and Benzeggagh, M. L., 'Interlaminar Mode-I Fracture Testing', in K. Friedrich (ed.), Application of Fracture Mechanics to Composite Materials, Elsevier, Amsterdam, 1989, pp. 81‐112.

    Google Scholar 

  22. Hashemi, S., Kinloch, A. J., and Williams, J. G., 'Corrections Needed in Double Cantilever Beam Tests for Assessing the Interlaminar Failure of Composites', Journal of Materials Science Letters 8, 1989, 125‐129.

    Google Scholar 

  23. Davies, P. and Moore, D. R., 'Glass/Nylon-6.6 Composites: Delamination Resistance Testing', Composites Science and Technology 38, 1990, 211‐227.

    Google Scholar 

  24. Carlsson, L. A. and Gillespie, J. W., 'Mode-II Interlaminar Fracture of Composites', in K. Friedrich (ed.), Application of Fracture Mechanics to Composite Materials, Elsevier, Amsterdam, 1989, pp. 113‐157.

    Google Scholar 

  25. Russell, A. J. and Street, K. N., 'Factors Affecting the Interlaminar Fracture Energy of Graphite/Epoxy Laminates', Proc. ICCM-IV, Tokyo, 1982, 279.

  26. Hudson, R. C., Davidson, B. D., and Polaha, J. J., 'Effect of Remote Ply Orientation on the Perceived Mode I and Mode II Toughness of θ/ θ and θ /-θ Interfaces', in A. Poursartip and K. Street (eds.), Proc. ICCM-10, Vol. I, Woodhead Publishing, Whistler, Canada, 1995, pp. 133‐140.

    Google Scholar 

  27. Ebeling, T., Hiltner, A., Baer, E., Fraser, I. M., and Orton, M. L., 'Delamination Failure of a Woven Glass Fiber Composite', Journal of Composite Materials 31(13), 1997, 1318‐1333.

    Google Scholar 

  28. Tohgo, K., Hirako, Y., Ishii, H., and Sano, K., 'Mode I Interlaminar Fracture Toughness and Fratcure Mechanism of Angle-Ply Carbon/Nylon Laminates', Journal of Composite Materials 30(6), 1996, 650‐661.

    Google Scholar 

  29. Martin, R. H., 'Delamination Characterisation of Woven Glass/Polyester Composites', Journal of Composites Technology and Research 19, 1997, 20‐28.

    Google Scholar 

  30. Davies, P., Cantwell, W. J., and Kausch, H.-H., 'Measurement of Initiation Values of GIc in IM6/PEEK', Composites Science and Technology 35, 1989, 301‐313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compston, P., Jar, PY.B. Comparison of Interlaminar Fracture Toughness in Unidirectional and Woven Roving Marine Composites. Applied Composite Materials 5, 189–206 (1998). https://doi.org/10.1023/A:1008899628807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008899628807

Navigation