Skip to main content
Log in

Optimum Design of Laminated Composite Plates Undergoing Large Amplitude Oscillations

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The optimum design of composite laminated plates under going large amplitude free vibration is discussed. Von Karman's nonlinear strain displacement relations are considered to account for large amplitude. A higher order shear deformation theory with parabolic variation of transverse shear stresses through thickness is used in the finite element formulation. A nine-noded isoparametric element with 7 dof per node is adopted. Ritz formulation for nonlinear finite element analysis is implemented and the direct iteration method is used to solve the governing nonlinear equation. Optimization is carried out using genetic algorithm (GA) with tournament selection scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, J. N. and Chao, W. C., 'Large-Deflection and Large Amplitude Free Vibrations of Laminated Composite Material Plates', Comput. Struct. 13, 1981, 341-347.

    Google Scholar 

  2. Gajbir, S., Venkateswara Rao, G. and Iyengar, N. G. R., 'Large Deflection of Shear Deformable Composite Plates Using a Simple Higher Order Theory', Composite Engineering 3(6), 1993, 507-525.

    Google Scholar 

  3. Tenneti, R. and Chandrasekhara, K., 'Nonlinear Vibration of Laminated Plates Using a Refined Shear Flexible Finite Element', Adv. Composite Mat. 4, 1994, 145-158.

    Google Scholar 

  4. Holland, J. H., Adaptation in Natural and Artificial Systems, Univ. of Michigan Press, Ann Arbor, Michigan, 1975.

    Google Scholar 

  5. Goldberg, D. E., 'Computer-Aided Gas Pipeline Operation Using Genetic Algorithms and Rule Learning', Doctoral Dissertation, University of Michigan. Dissertation Abstracts International 44(10), 1983, 3174B (University microfilms No. 8402282).

  6. Davis, L., 'Job Shop Scheduling with Genetic Algorithm', in Proceedings of an International Conference on Genetic Algorithms and Their Applications, 1985, Carnegie Mellon Univ., pp. 136-140.

  7. Deb, K., 'Optimal Design of a Welded Beam Structure via Genetic Algorithms', J. AIAA 29(11), 1991, 2013-2015.

    Google Scholar 

  8. Nagendra, S., Haftka, R. T. and Gurdal, Z., 'Buckling Optimization of Laminate Stacking Sequence with Strain Constraints', in Proceedings of the Tenth Conference on Electronic Computation, Indianapolis In, 1991, pp. 205-215.

  9. Nagendra, S., Haftka, R. T. and Gurdal, Z., 'Stacking Sequence Optimization of Simply Supported Laminates with Stability and Strain Constraints', J. AIAA 30(8), 1992, 2132-2137.

    Google Scholar 

  10. Nagendra, S., Haftka, R. T. and Gurdal, Z., 'Design of Blade Stiffened Composite Panels by a Genetic Algorithm Approach', in Proceedings of the 34th AIAA/ASME/AHS Structures, Structural Dynamics and Materials Conference, 1993, Lajolla, California, pp. 2418-2436.

  11. Callahan, J. K. and Weeks, E. G., 'Optimum Design of Composite Laminates Using Genetic Algorithms', Composite Engineering 2, 1992, 149-160.

    Google Scholar 

  12. Kogiso, M., Watson, L. T., Gurdal, L., Haftka, R. T. and Nagendra, S., 'Design of Composite Laminates by a Genetic Algorithm with Memory', Mechanics of Composite Materials and Struct. 1, 1994, 95-117.

    Google Scholar 

  13. Mahesh, K., Kishore, N. N. and Deb, K., 'Optimum Design of Composite Turbine Blade Using Genetic Algorithms', Adv. Composite Materials 5, 1996, 87-98.

    Google Scholar 

  14. Lin, C. Y. and Hajela, P., 'Genetic Algorithms in Optimization Problems with Discrete and Integer Design Variables', Engg. Opt. 19, 1992, 309-327.

    Google Scholar 

  15. Shankara, C. A. and Iyengar, N. G. R., 'A C 0 Element for the Free Vibration Analysis of Laminated Composite Plates', J. Sound and Vib. 191(5), 1996, 721-738.

    Google Scholar 

  16. Rajasekaran, S. and Murrary, D.W., 'On Incremental Finite Element Matrices', J. Struct. Engg. Div. ASCE 99, 1973, 2423-2438.

    Google Scholar 

  17. Ganapathi, M. and Varadan, T. K., 'Nonlinear Flexural Vibrations of Laminated Orthotropic Plates', Comput. Struct. 39(6), 1991, 685-688.

    Google Scholar 

  18. Kanaka Raju, K. and Hinton, E., 'Nonlinear Vibrations of Thick Plates Using Mindlin Plate elements', Int. J. Num. Meth. Engg. 16, 1980, 247-257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivakumar, K., Iyengar, N.G.R. & Kalyanmoy, D. Optimum Design of Laminated Composite Plates Undergoing Large Amplitude Oscillations. Applied Composite Materials 6, 87–98 (1999). https://doi.org/10.1023/A:1008896918956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008896918956

Navigation