Journal of Computational Neuroscience

, Volume 6, Issue 2, pp 99–120 | Cite as

Frequency Change Detection in Human Auditory Cortex

  • Patrick May
  • Hannu Tiitinen
  • Risto J. Ilmoniemi
  • Göte Nyman
  • John G. Taylor
  • Risto Näätänen


We offer a model of how human cortex detects changes in the auditory environment. Auditory change detection has recently been the object of intense investigation via the mismatch negativity (MMN). MMN is a preattentive response to sudden changes in stimulation, measured noninvasively in the electroencephalogram (EEG) and the magnetoencephalogram (MEG). It is elicited in the oddball paradigm, where infrequent deviant tones intersperse a series of repetitive standard tones. However, little apart from the participation of tonotopically organized auditory cortex is known about the neural mechanisms underlying change detection and the MMN. In the present study, we investigate how poststimulus inhibition might account for MMN and compare the effects of adaptation with those of lateral inhibition in a model describing tonotopically organized cortex. To test the predictions of our model, we performed MEG and EEG measurements on human subjects and used both small- (<1/3 octave) and large- (>5 octaves) frequency differences between the standard and deviant tones. The experimental results bear out the prediction that MMN is due to both adaptation and lateral inhibition. Finally, we suggest that MMN might serve as a probe of what stimulus features are mapped by human auditory cortex.

adaptation auditory cortex change detection lateral inhibition mismatch negativity MMN 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitkin LM (1990) The Auditory Cortex: Structural and Functional Bases of Auditory Perception. Chapman and Hall, London.Google Scholar
  2. Aitkin LM, Merzenich MM, Irvine DRF, Clarey JC, Nelson JE (1986) Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). J. Comp. Neurol. 252:175–185.Google Scholar
  3. Alho K (1995) Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear & Hearing 16:38–51.Google Scholar
  4. Alho K, Huotilainen M, Tiitinen H, Ilmoniemi RJ, Knuutila J, Nääatänen R (1993) Memory-related processing of complex sound patterns in human auditory cortex: An MEG study. NeuroReport 4:391–394.Google Scholar
  5. Arezzo JC, Vaughan Jr HG, Kraut MA, Steinschneider M, Legatt AD (1986) Intracranial generators of event-related potentials in the monkey. Evoked Potentials. Liss. pp. 174–189.Google Scholar
  6. Bertrand O, Perrin F, Echallier J, Pernier J (1988) Topography and model analysis of auditory evoked potentials: Tonotopic aspects. In: G Pfurtscheller, FH Lopes da Silva, eds. Functional Brain Imaging. Hans Huber, Toronto. pp. 75–82.Google Scholar
  7. Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neurosci. 20(2):365–383.Google Scholar
  8. Brugge JF (1982) Auditory cortical areas in primates. In: CN Woolsey, ed. Cortical Sensory Organization. Vol. 3. Multiple Auditory Areas. Humana, Clifton, NJ. pp. 59–70.Google Scholar
  9. Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 48:1302–1320.Google Scholar
  10. Connors BW, Malenka RC, Silva LR (1988) Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J. Physiol. (London) 406:443–468.Google Scholar
  11. Cowan N, Winkler I, Teder W, Nääatänen R (1993) Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). J. Experi. Psychol.: Learning, Memory & Cognition 19(4):909–921.Google Scholar
  12. Csépe V, Karmos G, Molnár M (1987) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat-animal model of mismatch negativity. Electroencephalography & Clin. Neurophysiol. 66:571–578.Google Scholar
  13. Csépe V, Pantev C, Hoke M, Hampson S, Ross B (1992) Evoked magnetic responses of the human auditory cortex to minor pitch changes: Localization of the mismatch field. Electroencephalography & Clin. Neurophysiol. 84:538–548.Google Scholar
  14. Depireux DA, Simon JZ, Shamma SA (1997) Response-field dynamics in the auditory pathway. Sixth Annual Computational Neuroscience Meeting, Big Sky, Montana.Google Scholar
  15. Douglas RJ, Koch C, Mahowald M, Martin KAC, Suarez HH (1995) Recurrent excitation in neocortical circuits. Nature 269:981–985.Google Scholar
  16. Douglas RJ, Martin KAC (1990) Neocortex. In: GM Sheperd, ed. The Synaptic Organization of the Brain. Oxford University Press, Oxford. pp. 389–438.Google Scholar
  17. Douglas RJ, Martin KAC (1991) A functional microcircuit for cat visual cortex. J. Physiol. 440:735–769.Google Scholar
  18. Eggermont JJ (1991) Rate and synchronization measures of periodicity coding in cat primary auditory cortex. Hearing Res. 56:153–167.Google Scholar
  19. Elberling C, Bak C, Kofoed B, Lebech J, Saermark K(1982) Auditory magnetic fields: Source location and "tonotopic organization" in the right hemisphere of the human brain. Scand. Audiol. 11:61–65.Google Scholar
  20. Ford JM, Hillyard SA (1981) Event related potentials, ERPs, to interruptions of steady rhythm. Psychophysiol. 18:322–330.Google Scholar
  21. Giard MH, Lavikainen J, Reinikainen K, Perrin F, Bertrand O, Pernier J, Nääatänen R (1995) Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis. J. Cognitive Neurosci. 7(2):133–143.Google Scholar
  22. Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in processing of auditory stimulus deviance: A topographic event-related potential study. Psychophysiol. 27:627–640.Google Scholar
  23. Halgren E, Baudena P, Clarke JM, Heit G, Liegeois C, Chauvel P, Musolino A (1995) Intracerebral potentials to rare target and distractor auditory and visual stimuli: I. Superior temporal plane and parietal lobe. Electroencephalography & Clin. Neurophysiol. 94:191–220.Google Scholar
  24. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography: Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. of Modern Physics 65:413–497.Google Scholar
  25. Hari R, Hämäläinen M, Ilmoniemi RJ, Kaukoranta E, Reinikainen K, Salminen J, Alho K, Nääatänen R, Sams M (1984) Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: Neuromagnetic recordings in man. Neurosci. Letters 50:127–132.Google Scholar
  26. Hari R, Joutsiniemi SL, Sarvas J (1988) Spatial resolution of neuromagnetic records: theoretical calculations in a spherical model. Electroencephalography & Clin. Neurophysiol. 71:64–72.Google Scholar
  27. He J, Hashikawa T, Ojima H, Kinouchi Y (1997) Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J. Neurosci. 17:2615–2625.Google Scholar
  28. Hose B, Langner G, Scheich H (1987) Topographic representation of periodicities in the forebrain of the mynah bird: One map for pitch and rhythm? Brain Res. 422:367–373.Google Scholar
  29. Howard III MA, Volkov IO, Abbas PJ, Damasio H, Ollendick MC, Granner MA (1996) A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Res. 724:260–264.Google Scholar
  30. Imada T, Fukuda K, Kawakatsu M, Mashiko T, Okada K, Hayashi M, Aihara K, Kotani M (1995) Mismatch fields evoked by a rhythm passage. In: C Baumgartner, L Deecke, G Stroink, SJ Williamson, eds. Biomagnetism: Fundamental Research and Clinical Applications. Elsevier, Amsterdam. pp. 249–252.Google Scholar
  31. Javitt DC, Schroeder CE, Steinschneider M, Arezzo JC, Ritter W, Vaughan Jr HG(1995) Cognitive event-related potentials in human and non-human primates: Implications for the PCP/NMDAmodel of schizophrenia. In: G Karmos, M Molnar, V Csépe, I Czigler, JE Demedt, eds. Perspectives of Event-Related Potentials Research (EEG Supplement 44). Elsevier Science, Amsterdam. pp. 161–175.Google Scholar
  32. Javitt DC, Steinschneider M, Schroeder CE, Vaughan Jr HG, Arezzo JC (1994) Detection of stimulus deviance within primate primary auditory cortex: Intracortical mechanisms of mismatch negativity (MMN) generation. Brain Res. 667:192–200.Google Scholar
  33. Karmos G, Winkler I, Molnár M, Csépe V (1993) Animal model of middle latency auditory evoked responses: Intracortical generators of mismatch negativity. In: HJ Heinze, TF Munte, GR Mangun, eds. New Developments in Event-Related Potentials. Birkhauser, Boston, MA. pp. 95–102.Google Scholar
  34. Knuutila JET, Ahonen AI, Hämäläinen MS, Kajola MJ, Laine PP, Lounasmaa OV, Parkkonen LT, Simola JT, Tesche CD (1993) A 122-channel whole-cortex SQUID system for measuring brain' magnetic field. IEEE Trans. on Magnetism 29:3315–3320.Google Scholar
  35. Koch C, Rapp M, Segev I (1996) A brief history of time (constants). Cerebral Cortex 6:93–101.Google Scholar
  36. Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J. Neurophysiol. 76:3503–3523.Google Scholar
  37. Kraus N, McGee T, Littman T, Nicol T, King C (1994) Nonprimary auditory thalamic representation of acoustic change. J. Neurophysiol. 72:1270–1277.Google Scholar
  38. Kropotov JD, Nääatänen R, Sevostianov AV, Alho K, Reinikainen K, Kropotova OV (1995) Mismatch negativity to auditory stimulus change recorded directly from the human temporal cortex. Psychophysiol. 32:418–422.Google Scholar
  39. Lauter JL, Herschovitch P, Formby C, Raichle ME (1985) Tonotopic organization in the human auditory cortex revealed by positron emission tomography. Hearing Res. 20:199–205.Google Scholar
  40. Lu Z-L, Williamson SJ, Kaufman L (1992) Human auditory primary and association cortex have differing lifetimes for activation traces. Brain Res. 572:236–241.Google Scholar
  41. McCormick D (1990) Membrane properties and neurotransmitter actions. In: G Sheperd, ed. The Synaptic Organization of the Brain, 3rd ed. Oxford University Press, Oxford. pp. 32–66.Google Scholar
  42. Merzenich MM, Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res. 50:275–296.Google Scholar
  43. Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65:37–100.Google Scholar
  44. Nääatänen R (1984) In search of a short-duration memory trace of a stimulus in the human brain. In: L Pulkkinen, P Lyytinen, eds. Human Action and Personality: Essays in Honour of Martti Takala. University of Jyväskylä, Jyväskylä, Finland. pp. 29–43.Google Scholar
  45. Nääatänen R (1986) The orienting response theory: An integration of informational and energetical aspects of brain function. In: RGJ Hockey, AWK Gaillard, M Coles, eds. Adaptation to Stress and Task Demands: Energetical Aspects of Human Information Processing. Martinus Nijhoff, Dordrecht. pp. 91–111.Google Scholar
  46. Nääatänen R (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral & Brain Sci. 13:201–288.Google Scholar
  47. Nääatänen R (1992) Attention and Brain Function. Erlbaum, Hillsdale, NJ.Google Scholar
  48. Nääatänen R (1995) The mismatch negativity: A powerful tool for cognitive neuroscience. Ear & Hearing 16:6–18.Google Scholar
  49. Nääatänen R, Alho K (1995) Mismatch negativity: A unique measure of sensory processing in audition. Intl. J. Neurosci. 80:317–337.Google Scholar
  50. Nääatänen R, Gaillard AWK, Mäntysalo S (1978) Early selectiveattention effect on evoked potential reinterpreted. Acta Psychologica 42:313–329.Google Scholar
  51. Nääatänen R, Lehtokoski A, Lennes M, Cheour M, Huotilainen M, Iivonen A, Vainio M, Alku P, Ilmoniemi RJ Luuk A, Allik J, Sinkkonen J, Alho K (1997) Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature 385:432–434.Google Scholar
  52. Nälälatänen R, Paavilainen P, Alho K, Reinikainen K, Sams M (1989a) Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain? Neurosci. Letters 98:217–221.Google Scholar
  53. Nääatänen R, Paavilainen P, Reinikainen K (1989b) Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man? Neurosci. Letters 107:347–352.Google Scholar
  54. Nääatänen R, Picton TW (1987) The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiol. 24:375–425.Google Scholar
  55. Nääatänen R, Schröger E, Tervaniemi M, Karakas S, Paavilainen P (1993) Development of a memory trace for complex sound patterns in the human brain. NeuroReport 4:503–506.Google Scholar
  56. Nordby H, Roth WT, Pfefferbaum A (1988) Event-related potentials to time-deviant and pitch-deviant tones. Psychophysiol. 25:249–261.Google Scholar
  57. Paavilainen P, Saarinen J, Tervaniemi M, Nääatänen R (1995) Mismatch negativity to changes in abstract sound features during selective listening. J. Psychophysiol. 9:243–249.Google Scholar
  58. Pandya DN (1995) Anatomy of the auditory cortex. Rev. in Neurol. (Paris) 151(8–9):486–494.Google Scholar
  59. Pantev C, Hoke M, Lehnertz K, Lütkenhoner B, Anogianakis G, Wittkowski W (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalography & Clin. Neurophysiol. 69:160–170.Google Scholar
  60. Pavlov IP (1927) Conditioned Reflexes. Clarendon Press, Oxford.Google Scholar
  61. Picton TW, Woods DL, Proulx GB (1978) Human auditory sustained potentials. I. The nature of the response. Electroencephalography & Clin. Neurophysiol. 45:186–197.Google Scholar
  62. Rhode WS, Greenberg S (1994) Lateral suppression and inhibition in the cochlear nucleus of the cat. J. Neurophysiol. 71:493–514.Google Scholar
  63. Roberts TPL, Poeppel D (1996) Latency of auditory evoked M100 as a function of tone frequency. NeuroReport 7:1138–1140.Google Scholar
  64. Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244.Google Scholar
  65. Romani GL, Williamson SJ, Kaufman L (1982) Tonotopic organization of the human auditory cortex. Science 216:1339–1340.Google Scholar
  66. Sams M, Hämäläinen M, Antervo A, Kaukoranta E, Reinikainen K, Hari R (1985) Cerebral neuromagnetic responses evoked by short auditory stimuli. Electroencephalography & Clin. Neurophysiol. 61:254–266.Google Scholar
  67. Sams M, Kaukoranta E, Hämäläinen M, Nääatänen R (1991) Cortical activity elicited by changes in auditory stimuli: Different sources for magnetic N100m and mismatch responses. Psychophysiol. 28:21–29.Google Scholar
  68. Schreiner CE (1992) Functional organization of the auditory cortex: Maps and mechanisms. Current Opinion in Neurobiol. 2:516–521.Google Scholar
  69. Schreiner CE, Urbas JV (1988) Representation of amplitude modulation in the auditory cortex of cat. II. Comparison between cortical fields. Hearing Res. 32:49–64.Google Scholar
  70. Schröger E (1994) An event-related potential study of sensory representations of unfamiliar tonal patterns. Psychophysiol. 31:175–181.Google Scholar
  71. Schröger E, Nääatänen R, Paavilainen P (1992) Event-related potentials reveal how non-attended complex sound patterns are represented by the human brain. Neurosci. Letters 146:183–186.Google Scholar
  72. Schwindt PC, Spain WJ, Foehring RC, Stafstrom CE, Chubb MC, Crill WE (1988) Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J. Neurophysiol. 59:450–467.Google Scholar
  73. Sokolov EN (1960) Neuronal model and orienting reflex. In: MAB Brazier, ed. The Central Nervous System and behavior. Madison Printing, Madison, NJ. pp. 187–276.Google Scholar
  74. Suarez H, Koch C, Douglas R (1995) Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. J. Neurosci. 15:6700–6719.Google Scholar
  75. Taylor JG, Alavi FN (1993) Mathematical analysis of a competitive network for attention. In: JG Taylor, ed. Mathematical Approaches to Neural Networks. Elsevier, Amsterdam. pp. 341–382.Google Scholar
  76. Tiitinen H, Alho K, Huotilainen M, Ilmoniemi RJ, Simola J, Nääatänen R (1993) Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiol. 30:537–540.Google Scholar
  77. Tiitinen H, May P, Reinikainen K, Nääatänen R (1994) Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372:90–92.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Patrick May
    • 1
  • Hannu Tiitinen
    • 2
  • Risto J. Ilmoniemi
    • 3
  • Göte Nyman
    • 4
  • John G. Taylor
    • 5
  • Risto Näätänen
    • 6
  1. 1.Department of MathematicsKing's College London, StrandLondonUK
  2. 2.Cognitive Brain Research Unit, Department of PsychologyUniversity of HelsinkiFinland
  3. 3.BioMag Laboratory, Medical Engineering CentreHelsinki University Central HospitalHelsinkiFinland
  4. 4.Department of PsychologyUniversity of HelsinkiFinland
  5. 5.Department of MathematicsKing's College London, StrandLondonUK
  6. 6.Cognitive Brain Research Unit, Department of PsychologyUniversity of HelsinkiFinland

Personalised recommendations