Skip to main content
Log in

Attachment kinetics, proliferation rates and vinculin assembly of bovine osteoblasts cultured on different pre-coated artificial substrates

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Primary bovine osteoblasts were used to study in-vitro effects of attachment on vinculin assembly in cells cultured on various artificial substrates. Materials coated with fibronectin and bovine serum albumin (BSA) as well as untreated materials (tissue culture polystyrene and Aclar foils) were chosen to investigate substrate-dependent proliferation during the first 3 days of culture. Proliferation was highest on fibronectin-coated substrates, followed by BSA-coated and untreated substrates. During the first 24 h of cultivation, cell attachment kinetics revealed no significant difference between the various substrates. After 24 h detachment rates obtained by calcium depletion with ethylenediaminetetraacetic acid were highest on uncoated materials, followed by BSA- and fibronectin-coated substrates. Phase contrast microscopy revealed typical osteoblast morphology after cell adhesion for 24 h. The dynamic attachment process was concomitant with the reassembly of vinculin into streak-like focal contacts clustered on the ventral side of cells. The kinetics of vinculin reassembly were independent of the underlying coating. Thus, fibronectin coating of artificial substrates increased the attachment strength and proliferation rate of osteoblasts. While the reassembly of vinculin in focal contacts seems to be a prerequisite of osteoblast attachment in vitro, it does not seem to have profound effects on the subsequent cell behaviour on artificial substrates. © Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. Jennissen, in “Modern aspects of protein adsorption on biomaterials”, edited by Y. F. Missirlis and W. Lemm (Kluwer, Amsterdam, 1991) p. 63.

    Google Scholar 

  2. R. Bendori, D. Salomon and B. Geiger, EMBO J. 6 (1987) 2897.

    Google Scholar 

  3. M. J. Bissell and M. H. Barcellos-Hoff, J. Cell Sci. Suppl. 8 (1987) 327.

    Google Scholar 

  4. L. Masi, A. Franchi, M. Santucci, D. Danielli, L. Arganini, V. Giannone, L. Formigli, S. Benvenuti, A. Tanini, F. Beghe, M. Mian and M. L. Brandi, Calcif. Tissue Int. 51 (1992) 202.

    Google Scholar 

  5. J. B. Meigs and Y.-L. Wang, J. Cell Biol. 102 (1986) 1430.

    Google Scholar 

  6. S. Vukicevic, F. P. Luyten, H. K. Kleinman and A. H. Reddi, Cell 63 (1990) 437.

    Google Scholar 

  7. W. J. Grzesik and P. G. Robey, J. Bone Miner. Res. 9 (1994) 487.

    Google Scholar 

  8. K. Moller, U. Meyer, D. H. Szulczewski, H. Heide, B. Priessnitz and D. B. Jones, Cells Materials 4 (1994) 263.

    Google Scholar 

  9. S. J. Jones and A. Boyde, Scanning Electron Microsc. 2 (1979) 529.

    Google Scholar 

  10. M. A. Malik, D. A. Puleo, R. Bizios and R. H. Doremus, Biomaterials 13 (1992) 123.

    Google Scholar 

  11. D. A. Puleo and R. Bizios, J. Biomed. Mater. Res. 26 (1992) 291.

    Google Scholar 

  12. Idem., Bone Miner. 18 (1992) 215.

    Google Scholar 

  13. W.-T. Chen and S. J. Singer, J. Cell Biol. 95 (1982) 205.

    Google Scholar 

  14. K. Burridge, K. Fath, T. Kelly, G. Nuckolls and C. Turner, Ann. Rev. Cell Biol. 4 (1988) 487.

    Google Scholar 

  15. B. Geiger, Z. Avnur, G. Rinnerthaler, H. Hinssen and V. J. Small, J. Cell Biol. 99 (1984) 835.

    Google Scholar 

  16. K. Burridge and J. R. Feramisco, Cell 19 (1980) 587.

    Google Scholar 

  17. J. J. Otto, Cell Motil. Cytoskeleton 16 (1990) 1.

    Google Scholar 

  18. M. Samuels, R. M. Ezzeil, T. J. Cardozo, D. R. Critchley, J.-L. Coll and E. D. Adamson, J. Cell Biol. 121 (1993) 909.

    Google Scholar 

  19. D. B. Jones, H. Nolte, J. G. Scholuebbers, E. Turner and D. Veltel, Biomaterials 12 (1991) 101.

    Google Scholar 

  20. S. K. Akiyama, K. Nagata and K. M. Yamada, Biochim. Biophys. Acta 1031 (1990).

  21. S. M. Albelda and C. A. Buck, FASEB J. 4 (1990) 2868.

    Google Scholar 

  22. J. S. Bauer, C. L. Schreiner, F. G. Giancotti, E. Ruoslahti and R. L. Juliano, J. Cell Biol. 116 (1992) 477.

    Google Scholar 

  23. R. O. Hynes, Cell 48 (1987) 549.

    Google Scholar 

  24. E. Ruoslahti and M. D. Pierschbacher, Science 238 (1987) 491.

    Google Scholar 

  25. D. D. Schlaepfer, S. K. Hanks, T. Hunter and P. van der Geer, Nature 372 (1994) 786.

    Google Scholar 

  26. R. S. Carvalho, J. E. Scott, D. M. Suga and E. H. Yen, J. Bone Miner. Res. 9 (1994) 999.

    Google Scholar 

  27. A. Morla, Z. Zhang and E. Ruoslahti, Nature 367 (1994) 193.

    Google Scholar 

  28. M. A. Horton and J. Davies, J. Bone Miner. Res. 4 (1989) 803.

    Google Scholar 

  29. D. A. Puleo and R. Bizios, Bone 12 (1991) 271.

    Google Scholar 

  30. B. Geiger, Cell 18 (1979) 193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, U., Meyer, T. & Jones, D.B. Attachment kinetics, proliferation rates and vinculin assembly of bovine osteoblasts cultured on different pre-coated artificial substrates. Journal of Materials Science: Materials in Medicine 9, 301–307 (1998). https://doi.org/10.1023/A:1008894612021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008894612021

Keywords

Navigation