Biodiversity & Conservation

, Volume 7, Issue 9, pp 1163–1186 | Cite as

Freshwater protozoa: biodiversity and ecological function

  • B.J. FinlayEmail author
  • G.F. Esteban


The purpose of this article is to pull together various elements from current knowledge regarding the natural history of free-living protozoa in fresh waters. We define their functional role, set the likely limits of ‘biodiversity’, and explore how the two may be related. Protozoa are unicellular, phagotrophic organisms, and 16 phyla of protists contain free-living freshwater protozoan species. They are the most important grazers of microbes in aquatic environments and the only grazers of any importance in anoxic habitats. In sediments, ciliates are usually the dominant protozoans. Benthic ciliate biomass accounts for slightly less than 10% of total benthic invertebrate biomass, but ciliate production may equal or even exceed invertebrate production. Freshwater protozoan species are probably ubiquitous, although many may persist locally for long periods in a cryptic state – as ‘potential’ rather than ‘active’ biodiversity. As protozoa are among the largest and most complex of micro-organisms, it follows that bacteria and all other smaller, more numerous microbes are also ubiquitous. The number of protozoan species recorded in local surveys (232) is about 10% of the estimated global species richness (2390). The 'seedbank’ of protozoan (and microbial) species ensures that local microbial diversity is never so impoverished that it cannot play its full part in ecosystem functions such as carbon fixation and nutrient cycling.

Protozoa freshwater biodiversity species-number ecological function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, O.R. (1997) Annual abundances, diversity and growth potential of Gymnamoebae in a shallow freshwater pond. J. Euk. Microbiol. 44, 393–398.Google Scholar
  2. Arndt, H. (1993) A critical review of the importance of rhizopods (naked and testate amoebae) and actinopods (heliozoa) in lake plankton. Mar. Microb. Food Webs 7, 3–29.Google Scholar
  3. Baldock, B.M., Baker, J.H. and Sleigh, M.A. (1983) Abundance and productivity of protozoa in chalk streams. Horarctic Ecol. 6, 238–246.Google Scholar
  4. Bamforth, A.S., Curds, C.R. and Finlay, B.J. (1987) Protozoa of two Kenya lakes. Trans. Am. Microsc. Soc. 106, 354–358.Google Scholar
  5. Beaver, J.R. and Crisman, T.L. (1989) The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17, 111–136.Google Scholar
  6. Bernard, C. and Fenchel, T. (1996) Some microaerobic ciliates are facultative anaerobes. Europ. J. Protistol. 32, 293–297.Google Scholar
  7. Berninger, U.-G., Finlay, B.J. and Kuuppo-Leinikki, P. (1991) Protozoan control of bacterial abundances in fresh water. Limnol. Oceanogr. 36, 139–147.Google Scholar
  8. Berninger, U.-G. Wickham, S.A. and Finlay, B.J. (1993) Trophic coupling within the microbial food web: a study with fine temporal resolution in a eutrophic freshwater ecosystem. Freshwat. Biol. 30, 419–432.Google Scholar
  9. Bhatia, B.J. (1936) The Fauna of British India, Protozoa: Ciliophora. London: Taylor and Francis.Google Scholar
  10. Biagini, G.A., Finlay, B.J., Lloyd, D. (1997) Evolution of the hydrogenosome. FEMS Microbiol. Lett. 155, 133–140.Google Scholar
  11. Biagini, G.A., Finlay, B.J., Lloyd, D. (1998) Protozoan stimulation of anaerobic microbial activity: enhancement of the rate of terminal decomposition of organic matter. FEMS Microbiol. Ecol. (In press)Google Scholar
  12. Bird, D.F. and Kalff, J. (1987) Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32, 277–284.Google Scholar
  13. Bird, D.F. and Kalff, J. (1989) Phagotrophic sustenance of a metalimnetic phytoplankton peak. Limnol. Oceanogr. 34, 155–162.Google Scholar
  14. Bryant, V.M.T. and Laybourn, J.E.M. (1972/73) The vertical distribution of ciliophora and nematoda in the sediments of Loch Leven, Kinross. Proc. R.S.E. (B) 74, 265–273.Google Scholar
  15. Butler, H. and Rogerson, A. (1995) Temporal and spatial distribution of naked amoebae (Gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Euk. Microbiol. 42, 724–730.Google Scholar
  16. Cairns, J. (1965) The protozoa of the Conestoga Basin. Notul. Nat. 375, 1–14.Google Scholar
  17. Cairns, J. (1966a) The protozoa of the Potomac River from Point of Rocks to Whites Ferry. Notul. Nat. 387, 1–11.Google Scholar
  18. Cairns, J. (1966b) The Catherwood Foundation Peruvian-Amazonian expedition. Monogr. Acad. Nat. Sci. Philad. 14, 53–61.Google Scholar
  19. Cairns, J. and Dickson, K.L. (1972) An ecosystematic study of the South River, Virginia: VPI-WRRC Bull. 54.Google Scholar
  20. Cairns, J and Ruthven, J.A. (1972) A test of the cosmopolitan distribution of fresh-water protozoans. Hydrobiologia 39, 405–427.Google Scholar
  21. Cairns, J. and Yongue, W.H. (1966) A checklist of the fresh-water protozoa of the Douglas Lake Region, Michigan. Notul. Nat. 383, 1–10.Google Scholar
  22. Canter, H.M. and Lund, J.W.G. (1968) The importance of protozoa in controlling the abundance of planktonic algae in lakes. Proc. Linn. Soc. Lond. 179, 203–219.Google Scholar
  23. Canter-Lund, H. and Lund, J.W.G. (1995) Freshwater Algae. Bristol: Biopress Ltd.Google Scholar
  24. Carrias, J.-F., Amblard, C. and Bourdier, G. (1996) Protistan bacterivory in an oligomesotrophic lake: importance of attached ciliates and flagellates. Microb. Ecol. 31, 249–268.Google Scholar
  25. Corliss, J.O. (1994) An interim utilitarian (``user-friendly'') hierarchical classification and characterization of the protists. Acta Protozool. 33, 1–51.Google Scholar
  26. Corliss, J.O. (1995) The need for a new look at the taxonomy of the protists. Rev. Soc. Mex. Hist. 45 (year 1994), 27–35.Google Scholar
  27. Decloitre, L. (1958) Thé camoebiens ré colté s au Cameroun par A. Villiers. Bulletin de l'I.F.A.N. 20, 1139–1144.Google Scholar
  28. Ekebom, J., Patterson, D.J. and Vørs, N. (1996) Heterotrophic flagellates from coral reef sediments (Great Barrier Reef, Australia) Arch. Protistenkd. 146, 251–272.Google Scholar
  29. Esteban, G. and Finlay, B.J. (1994) A new genus of anaerobic scuticociliate with endosymbiotic methanogens and ectobiotic bacteria. Arch. Protistenkd. 144, 350–356.Google Scholar
  30. Esteban, G., Finlay, B.J. and Embley, T.M. (1993a) New species double the diversity of anaerobic ciliates in a Spanish lake. FEMS Microbiol. Lett. 109, 93–100.Google Scholar
  31. Esteban, G., Guhl, B.E., Clarke, K.J., Embley, T.M. and Finlay, B.J. (1993b) Cyclidium porcatum n. sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Europ. J. Protistol. 29, 262–270.Google Scholar
  32. Farmer, M.A. (1993) Ultrastructure of Ditrichomonas honigbergii n. g., n. sp. (Parabasalia) and its relationship to amitochondrial protists. J. Euk. Microbiol. 40, 610–626.Google Scholar
  33. Fenchel, T. (1986a) Protozoan filter feeding. Prog. Protistol. 1, 65–113.Google Scholar
  34. Fenchel, T. (1986b) The ecology of heterotrophic microflagellates. Adv. Microb. Ecol. 9, 57–97.Google Scholar
  35. Fenchel, T. (1987) The Ecology of Protozoa. Madison: Science Tech. Publishers.Google Scholar
  36. Fenchel, T. (1991) Flagellate design and function. In The Biology of Free-living Heterotrophic Flagellates (Eds D.J. Patterson and J. Larsen). Systematics Association Special Volume No. 45, 7–19. Oxford: Clarendon Press.Google Scholar
  37. Fenchel, T. (1993) There are more small than large species? Oikos 68, 375–378.Google Scholar
  38. Fenchel, T. and Finlay, B.J. (1983) Respiration rates in heterotrophic free-living protozoa. Microb. Ecol. 9, 99–122.Google Scholar
  39. Fenchel, T. and Finlay, B.J. (1989) Kentrophoros: a mouthless ciliate with a symbiotic kitchen garden. Ophelia 30, 75–93.Google Scholar
  40. Fenchel, T. and Finlay, B.J. (1995) Ecology and evolution in anoxic worlds. Oxford Series in Ecology and Evolution (Eds R.M. May and P.H. Harvey). Oxford: Oxford University Press.Google Scholar
  41. Fenchel, T. and Harrison, P. (1976) The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (Eds J.M. Anderson and A. McFadyen) pp. 285–299. Oxford: Blackwell.Google Scholar
  42. Fenchel, T. and Ramsing, N.B. (1992) Identification of sulphate-reducing ectosymbiotic bacteria from anaerobic ciliates using 16S rRNA binding oligonucleotide probes. Arch. Microbiol. 158, 394–397.Google Scholar
  43. Fenchel T., Esteban G.F., Finlay B.J. (1997) Local versus global diversity of microorganisms: cryptic diversity of ciliated protozoa. Oikos 80, 220–225.Google Scholar
  44. Fenchel, T., Bernard, C., Esteban, G., Finlay, B.J., Hanse, P.J. and Iversen, N. (1995) Microbial diversity and activity in a Danish fjord with anoxic deep water. Ophelia 43, 45–100.Google Scholar
  45. Finlay, B.J. (1978) Community production and respiration by ciliated protozoa in the benthos of a small eutrophic loch. Freshwat. Biol. 8, 327–341.Google Scholar
  46. Finlay, B.J. (1980) Temporal and vertical distribution of ciliophoran communities in the benthos of a small eutrophic loch with particular reference to the redox profile. Freshwat. Biol. 10, 15–34.Google Scholar
  47. Finlay B.J. (1981) Oxygen availability and seasonal migrations of ciliated protozoa in a freshwater lake. J. Gen. Microbiol. 123, 173–178.Google Scholar
  48. Finlay, B.J. (1982) Effects of seasonal anoxia on the community of benthic ciliated protozoa in a productive lake. Arch. Protistenkd. 125, 215–222.Google Scholar
  49. Finlay, B.J. (1990) Physiological ecology of free-living protozoa. Adv. Micro. Ecol. 11, 134.Google Scholar
  50. Finlay, B.J. (1997) The diversity and ecological role of protozoa in fresh waters. In The Microbial Quality of Water (Ed. D.W. Sutcliffe) pp. 113–125. Ambleside: Freshwater Biological Association.Google Scholar
  51. Finlay, B.J. (1998) The global diversity of protozoa and other small species. Int. J. Parasitol. 28, 29–48.Google Scholar
  52. Finlay, B.J. and Esteban, G.F. (1998) Planktonic ciliate species diversity as an integral component of ecosystem function in a freshwater pond. Protist 149, 155–165.Google Scholar
  53. Finlay, B.J. and Fenchel, T. (1992) Methanogens and other bacteria as symbionts of free-living anaerobic ciliates. Symbiosis 14, 375–390.Google Scholar
  54. Finlay, B.J. and Fenchel, T. (1996) Ecology: role of ciliates in the natural environment. In Ciliates: Cells as Organisms (Eds K. Hausmann and P.C. Bradbury) pp. 417–440. Stuttgart: Gustav Fischer.Google Scholar
  55. Finlay, B.J., Bannister, P. and Stewart, J. (1979) Temporal variation in benthic ciliates and the application of association analysis. Freshwat. Biol. 9, 45–53.Google Scholar
  56. Finlay, B.J., Esteban, G.F. and Fenchel, T. (1996a) Global diversity and body size. Nature 383, 132–133.Google Scholar
  57. Finlay, B.J., Esteban, G.F. and Fenchel, T. (1998) Protozoan diversity: converging estimates of the global number of free-living ciliate species. Protist 149, 29–37.Google Scholar
  58. Finlay, B.J., Maberly, S.C. and Cooper, J.I. (1997) Microbial diversity and ecosystem function. Oikos 80, 209–213.Google Scholar
  59. Finlay, B.J., Maberly, S.C. and Esteban, G. (1996b) Spectacular abundance of ciliates in anoxic pond water: contribution of symbiont photosynthesis to host respiratory oxygen requirements. FEMS Microbiol. Ecol. 20, 229–235.Google Scholar
  60. Finlay, B.J., Téllez, C. and Esteban, G. (1993) Diversity of free-living ciliates in a Spanish stream in winter. J. Gen. Microbiol. 139, 2855–2863.Google Scholar
  61. Finlay, B.J., Clarke, K.J., Vicente, E. and Miracle, M.R. (1991) Anaerobic ciliates from a sulphiderich solution lake in Spain. Europ. J. Protistol. 27, 148–159.Google Scholar
  62. Finlay, B.J., Corliss, J.O., Esteban, G. and Fenchel, T. (1996c) Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Quart. Rev. Biol. 71, 221–237.Google Scholar
  63. Finlay, B.J., Curds, C.R., Bamforth, S.S. and Bafort, J.M. (1987) Ciliated protozoa and other microorganisms from two African soda lakes (Lake Nakuru and Lake Simbi, Kenya). Arch. Protistenkd. 133, 81–91.Google Scholar
  64. Finlay, B.J., Berninger, U.-G., Clarke, K.J., Cowling, A.J., Hindle, R.M. and Rogerson, A. (1988) On the abundance and distribution of protozoa and their food in a productive freshwater pond. Europ. J. Protistol. 23, 205–217.Google Scholar
  65. Foissner, W. (1980) Artenbestand und Struktur der Ciliatenzönose in alpinen Kleingewässern (Hohe Tauern, österreich). Arch. Protistenkd. 123, 99–126.Google Scholar
  66. Foissner, W. (1991) Diversity and ecology of soil flagellates. In: The Biology of Free-living Heterotrophic Flagellates (eds D.J. Patterson and J. Larsen). Systematics Association Special Volume No. 45, pp. 93–112. Oxford: Clarendon Press.Google Scholar
  67. Foissner (1992) Evaluating water quality using protozoa and saprobity indexes. In: Protocols in Protozoology, pp. B-11.1–B-11.20 (eds J.J. Lee and A.T. Soldo). Kansas: Society of Protozoologists.Google Scholar
  68. Foissner, W., Unterweger, A. and Henschel, T. (1992) Comparison of direct stream bed and artificial substrate sampling of ciliates (Protozoa, Ciliophora) in a mesosaprobic river. Limnologica 22, 97–104.Google Scholar
  69. Goulder, R. (1974) The seasonal and spatial distribution of some benthic ciliated Protozoa in Esthwaite Water. Freshwat. Biol. 4, 127–147.Google Scholar
  70. Grabacka, E. (1971) Ciliata in bottom sediments of fingerling ponds. Pol. Arch. Hydrobiol. 18, 225–233.Google Scholar
  71. Gray, E. (1952) The ecology of the ciliate fauna of Hobson's Brook, a Cambridgeshire chalk stream. J. Gen. Microbiol. 6, 108–122.Google Scholar
  72. Green, J. (1963) Zooplankton of the River Sokoto, the Rhizopoda Testacea. Proc. Zool. Soc. Lond. 141, 497–514.Google Scholar
  73. Green, J. (1966) Associations of testate rhizopods (Protozoa) in the plankton of a Malaysian estuary and two nearby ponds. J. Zool. Lond. 239, 485–506.Google Scholar
  74. Grossart, H.-P. and Simon, M. (1993) Limnetic macroscopic organic aggregates (lake snow): occurrence, characteristics, and microbial dynamics in Lake Constance. Limnol. Oceanogr. 38, 532–546.Google Scholar
  75. Guhl, B.E., Finlay, B.J. and Schink, B. (1996) Comparison of ciliate communities in the anoxic hypolimnia of three lakes: general features and the influence of lake characteristics. J. Plank. Res. 18, 335–353.Google Scholar
  76. Hällfors, G, and Hällfors, S. 1988. Records of chrysophytes with siliceous scales (Mallomonadaceae and Paraphysomonadaceae) from Finnish island waters. Hydrobiologia 161, 1–29.Google Scholar
  77. Hausmann, K. and Hülsmann, N. (1995) Protozoology. 2nd ed. Stuttgart: Georg Thieme.Google Scholar
  78. Haynes, J.R. (1981) Foraminifera. London: MacMillan.Google Scholar
  79. Hobbie, J.W. (1994) The state of the microbes: a summary of a symposium honoring Lawrence Pomeroy. Microb. Ecol. 28, 113–116.Google Scholar
  80. Ikävalko, J., Abildhange, H.T. and Carstens, M. (1996). A preliminary study of NE greenland shallow meltwater ponds with particular emphasis on loricate and scale-covered forms (Choanoflagellida, Chrysophyceae sensu lato, Synurophyceae, Heliozoa), including the de-scriptions of Epipyxis thamnoides sp. nov. and Pseudokephyrion poculiforme sp. nov. (Chrysophyceae) Arch. Protistenkd. 147, 29–42.Google Scholar
  81. Ilmavirta, V. 1988. Phytoflagellates and their ecology in Finnish brown-water lakes. Hydrobiologia 161, 255–270.Google Scholar
  82. Jack, J.D. and Gilbert, J.J. (1997) Effects of metazoan predators on ciliates in freshwater plankton communities. J. Euk. Microbiol. 44, 194–199.Google Scholar
  83. Jacobsen, B.A. (1985). Scale-bearing Chrysophyceae (Mallomonadaceae and Paraphysomonadaceae) from West Greenland. Nord. J. Bot.. 5, 381–395.Google Scholar
  84. Jax, K. (1997) On functional attributes of testate amoebae in the succession of freshwater aufwuchs. Europ. J. Protistol. 33, 219–226.Google Scholar
  85. Karpov, S.A. (1997) Cercomonads and their relationship to the myxomycetes. Arch. Protistenkd. 148, 297–307.Google Scholar
  86. Kirchhoff, B. and Meyer, B. (1995) A new phagotrophic species of Katodinium (Dinophyceae) from hypertrophic shallow lakes in North Germany. Nova Hedwigia 60, 179–185.Google Scholar
  87. Kristiansen, J. (1988) Seasonal occurrence of silica-scaled chrysophytes under eutrophic conditions. Hydrobiologia 161, 171–184.Google Scholar
  88. Kristiansen, J. (1992) Silica-scaled chrysophytes from West Greenland: Disko Island and the Søndre Strømfjord region. Nord. J. Bot.. 12, 525–536.Google Scholar
  89. Larsen, J. and Patterson, D.J. (1990) Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist. 24, 801–937.Google Scholar
  90. Larsen, J. and Sournia, A. (1991) The diversity of heterotrophic dinoflagellates. In The Biology of Free-living Heterotrophic Flagellates (eds D.J. Patterson and J. Larsen). Systematics Association Special Volume 45, pp. 313–332. Oxford: Clarendon Press.Google Scholar
  91. Laybourn-Parry, J. and Rogerson, A. (1993) Seasonal patterns of protozooplankton in Lake Windermere, England. Arch. Hydrobiol. 129, 25–43.Google Scholar
  92. Madoni, P. (1987) Estimation of production and respiration rates by the ciliated protozoa community in an experimental ricefield. Hydrobiologia 144, 113–120.Google Scholar
  93. Mathes, J. and Arndt, H. (1994) Biomass and composition of protozooplankton in relation to lake trophy in north German lakes. Mar. Microb. Food Webs 8, 357–375.Google Scholar
  94. Mathes, J. and Arndt, H. (1995) Annual cycle of protozooplankton (ciliates, flagellates and sarcodines) in relation to phyto-and metazooplankton in Lake Neumühler See (Mecklenburg, Germany). Arch. Hydrobiol. 134, 337–358.Google Scholar
  95. Müller, H. (1989) The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18, 261–273.Google Scholar
  96. Müller, H., Schöne, A., Pinto-Coelho, R.M., Schweizer, A. and Weisse, T. (1991) Seasonal succession of ciliates in Lake Constance. Microb. Ecol. 21, 119–138.Google Scholar
  97. Nanney, D.L. (1982) Genes and phenes in Tetrahymena. Bioscience, 32, 783–788.Google Scholar
  98. Nicholls, K.H. (1983) Little-known and new heliozoans: the centrohelid genus Acanthocystis, including descriptions of nine new species. Can. J. Zool.. 61, 1369–1386.Google Scholar
  99. Noland, L.E. (1925) Factors influencing the distribution of fresh water ciliates. Ecology 6, 437–452.Google Scholar
  100. O'dell, W.D. (1979) Isolation, enumeration and identification of amebae from a Nebraska lake. J. Protozool. 26, 265–269.Google Scholar
  101. Ogden, C.G. & Hedley, R.H. (1980) An Atlas of Freshwater Testate Amoebae. Brit. Mus. (Nat. Hist.)/ Oxford University Press.Google Scholar
  102. Pace, M.L. and Orcutt, J.D. (1981) The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26, 822–830.Google Scholar
  103. Page, F.C. (1983) Marine Gymnamoebae. Cambridge: Institute of Terrestrial Ecology.Google Scholar
  104. Page, F.C. (1988) A New Key to Freshwater and Soil Gymnamoebae with Instruction for Culture. Ambleside: Freshwater Biological Asociation.Google Scholar
  105. Page, F.C. and Siemensma, F.J. (1991) Nackte Rhizopoda und Heliozoea. Protozoenfauna Band 2. Stuttgart: Gustav Fischer.Google Scholar
  106. Patterson, D.J. and Hedley, S. (1992) Free-living Freshwater Protozoa: a Colour Guide. Aylesbury: Wolfe Publ. Ltd.Google Scholar
  107. Patterson, D.J. and Larsen, J. (1991) (Eds) The Biology of Free-living Heterotrophic Flagellates Systematics Association Special, 45. Oxford: Clarendon Press.Google Scholar
  108. Patterson, D.J. and Simpson, A.G.B. (1996) Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Europ. J. Protistol. 32, 423–448.Google Scholar
  109. Patterson, D.J. and Zölffel, M. (1991) Heterotrophic flagellates of uncertain taxonomic position. In The Biology of Free-living Heterotrophic Flagellates (Eds D.J. Patterson and J. Larsen) Systematics Association Special Volume No. 45. pp. 427–475. Oxford: Clarendon Press.Google Scholar
  110. Patterson, D.J., Larsen, J. and Corliss, J.O. (1989) The ecology of heterotrophic flagellates and ciliates living in marine sediments. Prog. Protistol. 3, 185–277.Google Scholar
  111. Rainer, H. (1968) Urtiere, Protozoa Wurzelfüûler, Rhizopoda Sonnentierchen, Heliozoa. In Dahl, F. Die Tierwelt Deutschlands 56. Jena: Gustav Fischer.Google Scholar
  112. Rogerson, A. and Berger, J. (1983) Enhancement of the microbial degradation of crude oil by the ciliate Colpidium colpoda. J. Gen. Appl. Microbiol. 29, 41–50.Google Scholar
  113. Rogerson, A. and Laybourn-Parry, J. (1992) Aggregate dwelling protozooplankton communities in estuaries. Arch. Microbiol. 125, 411–422.Google Scholar
  114. Ruthven, J.A. 1972. In Protozoan studies. An ecosystematic study of the South River, Virginia (Eds J., Cairns, Jr. and K.L. Dickson) Water Resources Research Center, Virginia Polytechnic Institute, Bulletin 54.Google Scholar
  115. Sanders, R.W. and Porter, K.G. (1988) Phagotrophic phytoflagellates. Adv. Microb. Ecol. 10, 167–192.Google Scholar
  116. Sanders, R.W. and Porter, K.G. (1990) Bacterivorous flagellates as food sources for the freshwater crustacean zooplanker Daphnia ambigua. Limnol. Oceanogr. 35, 188–191.Google Scholar
  117. Schaeffer, A.A. (1926) Taxonomy of the Amoebas with Decriptions of Thirty-Nine New Marine and Freshwater Species. Vol 24; Washington: Carnegie Institution of Washington.Google Scholar
  118. Schönborn, W. (1966) Untersuchungen über die Testaceen Schwedisch-Lapplands ein Beitrag zur Systematik und ökologie der beschalten Rhizopoden. Limnologica 4, 517–559.Google Scholar
  119. Schönborn, W. (1981) Die Ziliatenproduktion eines Baches. Limnologica 13, 203–212.Google Scholar
  120. Sherr, E.B. and Sherr, B.F. (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28, 223–235.Google Scholar
  121. Šimek, K., Bobková, J., Macek, M. and Nedoma, J. (1995) Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr. 40, 1077–1090.Google Scholar
  122. Šimek, K., Hartman, P., Nedoma, J., Pernthaler, J., Springmann, D., Vrba, J. and Psenner, R. (1997) Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquat. Microb. Ecol. 12, 49–63.Google Scholar
  123. Simpson, A.G.B., Bernard, C., Fenchel, T., Patterson, D.J. (1997) The organisation of Mastigamoeba schizophrenia n. sp.: more evidence of ultrastructural idiosyncracy and simplicity in pelobiont protists. Europ. J. Protistol. 33, 87–98.Google Scholar
  124. Sleigh, M.A., Baldock, B.M. and Baker, J.H. (1992) Protozoan communities in chalk streams. Hydrobiologia 248, 53–64.Google Scholar
  125. Small, E.B. (1973) A study of ciliate protozoa from a small polluted stream in East-Central Illinois. Amer. Zool. 13, 225–230.Google Scholar
  126. Smirnov, A.V. & Goodkov, A.V. (1996) Systematic diversity of gymnamoebae in the bottom sediments of a freshwater lake in Karelia (Lobosea, Gymnamoebia). Zoosyst. Rossica 4, 201–203.Google Scholar
  127. Stoecker, D.K. and Capuzzo, J.McD. (1990) Predation on protozoa: its importance to zooplankton. J. Plank. Res. 12, 891–908.Google Scholar
  128. Thomas, R. (1955) Remarques é cologiques sur les thécamoebiens. Trav. du Lab. de Bot. et Crypt. et de l'Institut Botanique de Talence, 25–28.Google Scholar
  129. Tong, S., Vørs, N. and Patterson, D.J. 1997. Heterotrophic flagellates, centrohelid heliozoa and filose amoebae from marine and freshwater sites in the Antarctic. Polar Biol. 18, 91–106.Google Scholar
  130. Vickerman, K. (1991) Organization of the bodonid flagellates. In The Biology of Free-living Heterotrophic Flagellates (eds D.J. Patterson and J. Larsen). Systematics Association Special Volume 45, pp. 159–176. Oxford: Clarendon Press.Google Scholar
  131. Vørs, N. (1992) Heterotrophic amoebae, flagellates and heliozoa from the Tvärminne area, Gulf of Finland, in 1988-1990. Ophelia 36, 1–109.Google Scholar
  132. Wailes, G.H. (1939) The plankton of Lake Windermere, England. Ann. Mag. Nat. Hist. 11, 401–414.Google Scholar
  133. Wang, C.C. (1928) Ecological studies of the seasonal distribution of protozoa in a fresh-water pond. J. Morph. Physiol. 46, 431–478.Google Scholar
  134. Webb, M.G. (1961) The effects if thermal stratification on the distribution of benthic protozoa in Esthwaite Water. J. Anim. Ecol. 30, 137–151.Google Scholar
  135. Weisse, T. (1997) Growth and production of heterotrophic nanoflagellates in a meso-eutrophic lake. J. Plank. Res. 19, 703–722.Google Scholar
  136. Wesenberg-Lund, C. (1904) Studier over de Danske Søers Plankton. Copenhagen: Dansk Ferskv-ands-Biologisk Laboratorium Op. 5.Google Scholar
  137. Wetzel, R.G. (1983) Limnology. 2nd ed. Fort Worth: Saunders College Publishing.Google Scholar
  138. Wickham, S.A. and Gilbert, J.J. (1993) The comparative importance of competition and predation by Daphnia on ciliated protists. Arch Microbiol. 126, 289–313.Google Scholar
  139. Zimmermann, U., Müller, H., Weisse, T. (1996) Seasonal and spatial variability of planktonic heliozoa in Lake Constance. Aquat. Microb. Ecol. 11, 21–29.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  1. 1.Windermere LaboratoryInstitute of Freshwater EcologyFar Sawrey, AmblesideUK

Personalised recommendations