Skip to main content
Log in

On the Role of Lengthscale in the Prediction of Failure of Composite Structures: Assessment and Needs

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The role of modeling in the design of structural composite components against failure is discussed. Composite materials fail due to damage processes operating at several lengthscales. The interactions between these processes offer the principal challenges to applying mechanism-based models at structural scales beyond the ply level. A methodology is proposed to increase the efficiency of the design process, analogous to the 'building block' approach, which provides a framework for integrating mechanism-based models with the current experimentally-based design process. Available models are reviewed and their key elements identified. General concepts are illustrated via a discussion of the particular issues pertaining to notched components. Key steps needed to allow the evolution of the design process to the envisioned process are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitehead, R. S. and Deo, R. B., 'A Building Block Approach to Design Verification Testing of Primary Composite Structures', Proceedings of the 24th AIAA/ASME/ASCE/AHS SDM Conference, Lake Tahoe, Nevada, 1983, 473‐477.

  2. Tsai, S. W., 'A Survey of Macroscopic Failure Criteria for Composite Materials', J. Reinf. Plas. Comp. 3, 1984, 40‐62.

    Google Scholar 

  3. Chamis, C. C., 'Mechanics of Composite Materials ‐ Past, Present and Future', J. Comp. Tech. Res. 11, 1989, 3‐14.

    Google Scholar 

  4. Whitney, J. M. and Nuismer, R. J., 'Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations', J. Comp. Mater. 8, 1974, 253‐265.

    Google Scholar 

  5. Mar, J. W. and Lin, K. Y., 'Fracture of Boron/Aluminum Composites with Discontinuities', J. Comp. Mater. 11, 1977, 405‐421.

    Google Scholar 

  6. Ashby, M. F., 'Physical Modeling of Materials Problems', Mat. Sci. Tech. 8, 1992, 102‐111.

    Google Scholar 

  7. Bunsell, A. R. (Ed.), Fiber Reinforcements for Composite Materials, Elsevier, 1988.

  8. Weibull, W., 'A Statistical Distribution Function of Wide Applicability', J. Appl. Mech. 18, 1951, 293.

    Google Scholar 

  9. Curtin, W. A., 'Theory of Mechanical Properties of Ceramic-Matrix Composites', J. Am. Ceram. Soc. 74, 1991, 2837‐2845.

    Google Scholar 

  10. Harlow, D. G. and Phoenix, S. L., 'The Chain-of-Bundles Probability Model for the Strength of Fibrous Materials I: Analysis and Conjectures', J. Comp. Mat. 12, 1978, 195‐214.

    Google Scholar 

  11. Aveston, J., Cooper, G. A., and Kelly, A., 'Single and Multiple Fracture in the Properties of Fiber Composites', Conf. Proc., National Physical Laboratory, IPC Science and Technology Press, 1971, 15‐26.

  12. Evans, A. G. and Zok, F. W., 'The Physics and Mechanics of Fibre-Reinforced Brittle Matrix Composites', J. Mat. Sci. 28, 1994, 3857‐3896.

    Google Scholar 

  13. Hitchon, J. W. and Phillips, D. C., 'The Effect of Specimen Size on the Strength of CFRP'Composites 9, 1978, 119‐124.

    Google Scholar 

  14. Ogin, S. L., Smith, P. A., and Beaumont, P. W. R., 'Matrix Cracking and Stiffness Reduction During the Fatigue of a (90/0)s GFRP Laminate', J. Comp. Sci. Tech. 24, 1985, 23‐31.

    Google Scholar 

  15. Dvorak, G. J. and Laws, N., 'Analysis of First Ply Failure in Composite Laminates', Eng. Fract. Mech. 25, 1986, 763‐770.

    Google Scholar 

  16. Xia, Z. C., Carr, R. R., and Hutchinson, J. W., 'Transverse Cracking in Fiber-Reinforced Brittle Matrix, Cross-Ply Laminates', Acta Metall. et Mater. 41, 1993, 2365‐2376.

    Google Scholar 

  17. McManus, H. L. and Maddocks, J. R., 'On Microcracking in Composite Laminates under Thermal and Mechanical Loading', Polymers and Polymer Composites 4, 1996, 304‐314.

    Google Scholar 

  18. Lagace, P. A. and Brewer, J. C., 'Quadratic Stress Criterion for Initiation of Delamination', J. Comp. Mat. 22, 1988, 1141‐1155.

    Google Scholar 

  19. O'Brien, T. K., 'Characterization of Delamination Onset and Growth in a Composite Laminate', ASTM STP 775, 1982, 140‐167.

  20. Hutchinson, J. W. and Suo, Z., 'Mixed Mode Cracking in Layered Materials', Applied Mech. Review 28, 1991, 63‐191.

    Google Scholar 

  21. Salpekar, S. A. and O'Brien, T. K., 'Combined Effect of Matrix Cracking and Stress-Free Edge on Delamination', ASTM STP 1110, 1993, 287‐311.

  22. Bhat, N. V., Delamination Growth in Graphite/Epoxy Composite Laminates Under Tensile Loading, TELAC Report 93-10, MIT, 1993.

  23. Jamison, R. D., 'On the Interrelationship between Fiber Fracture and Ply Cracking in Graphite/Epoxy Laminates', ASTM STP 907, 1986, 252‐273.

  24. Sun, C. T. and Jen, K. C., 'On the Effect of Matrix Cracks on Laminate Strength', J. Reinf. Plas. Comp. 6, 1987, 208‐222.

    Google Scholar 

  25. Harris, C. E. and Morris, D. H., Fracture Behaviour of Thick, Laminated Graphite Epoxy Composites, NASA Contractor Report 3784, 1984.

  26. Awerbuch, J. and Madhukar, M. S., 'Notched Strength of Composite Laminates: Predictions and Experiments ‐ A Review', J. Reinf. Plas. Comp. 4, 1985, 3‐159.

    Google Scholar 

  27. Mandell, J. F., Wang, S. S., and McGarry, F. J., 'The Extension of Crack Tip Damage Zones in Fiber Reinforced Plastic Laminates', J. Comp. Mat. 9, 1975, 266‐287.

    Google Scholar 

  28. Peters, P. W. M., 'On the Increasing Fracture Toughness at Increasing Notch Length of 0/90 and 0/ ± 45 / 0 Graphite/Epoxy Laminates', Composites 14, 1983, 365‐369.

    Google Scholar 

  29. Lagace, P. A., Bhat, N. V., and Gundogdu, A., 'Response of Notched Graphite/Epoxy and Graphite/PEEK Systems', ASTM STP 1110, 1993, 55‐71.

  30. Kortschot, M. T. and Beaumont, P. W. R., 'Damage-Based Notched Strength Modeling: A Summary', ASTM STP 1110, 1991, 617‐637.

  31. Spearing, S. M., Kortschot, M. T., and Beaumont, P. W. R., 'The Fatigue Damage Mechanics of Notched Carbon Fibre/PEEK Laminates', Composites 23, 1992, 305‐311.

    Google Scholar 

  32. Chang, F.-K. and Lessard, L. B., 'Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Compressive Loadings: Part I ‐ Analysis', J. Comp. Mater. 25, 1991, 2‐43.

    Google Scholar 

  33. Graves, M. J. and Lagace, P. A., 'Damage Tolerance of Composite Cylinders', Composite Structures 4, 1985, 75‐91.

    Google Scholar 

  34. Saeger, K. J. and Lagace, P. A., 'Fracture of Pressurized Composite Cylinders with a High Strain to Failure Matrix System', ASTM STP 907, 1986, 326‐337.

  35. Budiman, H. T. and Lagace, P. A., 'Nondimensional Parameters for Geometric Nonlinear Effects in Pressurized Cylinders with Axial Cracks', ASME, Transactions, J. Appl. Mech. 64, 1997, 401‐407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spearing, S.M., Lagace, P.A. & McManus, H.L.N. On the Role of Lengthscale in the Prediction of Failure of Composite Structures: Assessment and Needs. Applied Composite Materials 5, 139–149 (1998). https://doi.org/10.1023/A:1008876701815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008876701815

Navigation