World Journal of Microbiology and Biotechnology

, Volume 14, Issue 6, pp 843–846 | Cite as

Effect of oxygen supply on biomass, organic acids and vitamin B12 production by Propionibacterium shermanii

  • A. Quesada-Chanto
  • A.C. Schmid-Meyer
  • A.G. Schroeder
  • M.F. Carvalho-Jonas
  • I. Blanco
  • R. Jonas
Article

Abstract

Propionibacterium shermanii CDB 10015 was able to grow at different volumetric oxygen transfer coefficients (KLa) of 10, 22, 53h−1. These results demonstrate that this bacterium, known as anaerobic, is able to grow well under aerobic conditions. The cell biomass increased from 7.9 in anaerobic conditions to 18.3g/l at KLa 53h−1, increasing also the cell yield from 0.3 to 0.7g/g. The organic acid production pattern also changed with aeration. The acetic: propionic acid ratio increased from 0.38 in anaerobiosis to 6.25 at KLa 53h−1. The vitamin B12 production decreased from 3.1mg/l in anaerobiosis to 0.5mg/l at KLa 53h−1.

Oxygen Propionibacterium propionic acid vitamin B12. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, E.C. & Bullerman, L.B. 1966 Use of Cheese Whey for Vitamin B12 Production. Applied Microbiology 14, 356–357.Google Scholar
  2. Blanc, P. & Goma, G. 1987 Propionic acid fermentation improvement of performances by coupling continuous fermentation and ultrafiltration. Bioprocess Engineering 2, 137–139.Google Scholar
  3. Blanc, P. & Goma, G. 1989 Propionic aicd and biomass production using continuous ultrafiltration fermentation of whey. Biotechnology Letters 11, 189–194.Google Scholar
  4. Cummins, C.S. & Johnson, J.L. 1992 The Genus Propionibacterium. In The Prokaryotes, ed Balow, A. Vol. 1. pp 834–849. New York, Berlin, Heidelberg: Springer Verlag. ISBN 3–54097258–7.Google Scholar
  5. de Vries, W., van Wijck-Kapteijn, W.M.C. & Stouthamer, A.H. 1972 Influence of oxygen on growth, cytochrome synthese and fermentation pattern in propionic acid Bacteria. Journal of General Microbiology 71, 515–524.Google Scholar
  6. de Vries, W., van Wijck-Kapteijn, W.M.C. & Stouthamer, A.H. 1973 Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. Journal of General Microbiology 76, 31–41.Google Scholar
  7. Fischer, R.A. 1953 Rapid spectrophotometric determination of vitamin B12 in microbial material. Agricultural and Food Chemistry 1, 951–953.Google Scholar
  8. Florent, J. 1986 Vitamins. In Biotechnology, eds Rehm, H.J. & Reed, R. Vol. 4, pp 119–158, Weinheim: VCH.ISBN 3–527–25764–0.Google Scholar
  9. Flores-Galagarza, R.A., Glatz, B.A., Bern, C.J. & Fossen, L.D. 1985 Preservation of high moisture corn by microbial fermentation. Journal of Food Protection 48, 407–411.Google Scholar
  10. Gottschalk, G. 1986 Bacterial metabolism. 2nd ed. pp 244–246. New York, Berlin, Heidelberg: Springer Verlag ISBN 3–54096153–4.Google Scholar
  11. Mantere-Alhonen, S. & Mäkinen, E. 1987 A new type of sour milk with Propionibacteria. Meijeritieteellinen Aikakauskirja 45, 49–61.Google Scholar
  12. Miles-Ames 1983 Silage production from grass or grain crops European patent: EP-71858; 16.02.83.Google Scholar
  13. Molwitz, M., Silva, S.S., Ribeiro, J.D., Roberto, I.C., Felipe, M.G.A., Prata, A.M. & Mancilha, I.M. 1996 Aspects of the cell growth of Candida guilliermondii in sugar cane bagasse hydrolysate. Zeitschrift für Naturforschung 51c, 404–408.Google Scholar
  14. Nakano, K., Kataoka, H. & Matsumura, M. 1996 High density culture of Propionibacterium freundenreichii coupled with a propionic acid removal system with activated charcoal. Journal of Fermentation and Bioengineering 81, 37–41.Google Scholar
  15. Pirt, S.J. 1975 Principles of Microbe and Cell Cultivation. Oxford: Blackwell Scientific Publications, chapters 9–11. ISBN 0–63208150–3.Google Scholar
  16. Playne, M.J. 1985 Propionic and butyric acid. In Comprehensive Biotechnology. ed Moo-Young, M., vol. 3, pp 731–759, New York: Pergamon Press. ISBN 0–08032511–4.Google Scholar
  17. Quesada-Chanto, A., Afschar, A.S., Wagner, F. 1994a Microbial production of propionic acid and vitamin B12 using molasses or sugar. Applied Microbiology and Biotechnology 41, 378–383.Google Scholar
  18. Quesada-Chanto, A., Afschar, A.S., Wagner, F. 1994b Optimization of a Propionibacterium acidipropionici continuous culture utilizing sucrose. Applied Microbiology and Biotechnology 42, 16–21.Google Scholar
  19. Quesada-Chanto, A., Schroeder, A., Schmidt-Meyer, A., López, J.A., Silveira, M.M. & Jonas, R. 1997 Organic acids production by Propionibacterium shermanii: Effect of pH, temperature, and vitamin-nitrogen source. Zeitschrift für Naturforschung 52c, 193–196.Google Scholar
  20. Rehm, H.J. 1980 Industrielle Mikrobiologie. Berlin, Heidelberg, New York: Springer Verlag. ISBN 3–540–09642–6.Google Scholar
  21. Santana-Castillo, L., Pérez-Mendoza, J.L., & García-Hernández, P. 1985 Production of vitamin B12 by fermentation of an industrial waste-product of mexican lime. Development in Industrial Microbiology 26, 796–780.Google Scholar
  22. Schwartz, A.C. 1973 Anaerobiosis and oxygen consumption of some strains of Propionibacterium and a modified method of comparing the oxygen sensitivity of various anaerobes. Zeitschrift für Allgemeine Mikrobiologie 13, 681–691.Google Scholar
  23. Schwartz, A.C. & Sporkenbach, J. 1975 The Electron transport system of the anaerobic Propionibacterium shermanii. Cytochrome and inhibitor studies. Archives of Microbiology 102, 261–273.Google Scholar
  24. Schlegel, H.G. 1992 Allgemeine Mikrobiologie. 7th ed., pp 304–307, Stuttgart, New York: Georg Thieme Verlag. ISBN 3–13–444607–3.Google Scholar
  25. Valio 1994 New Lactobacillus casei ssp. rhamnosus strain. European patent: EP 575780; 05.01.94.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • A. Quesada-Chanto
    • 1
  • A.C. Schmid-Meyer
    • 1
  • A.G. Schroeder
    • 1
  • M.F. Carvalho-Jonas
    • 1
  • I. Blanco
    • 1
  • R. Jonas
    • 1
  1. 1.JoinvilleBrasil

Personalised recommendations