Skip to main content
Log in

Electrophoretic patterns of lipopolysaccharides and antigenic analysis of soybean bradyrhizobia

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Several serological methods have been used for the characterization and identification of soybean bradyrhizobia. However, some problem were non-reactivity of certain strains and cross-reactivity among others. Since lipopolysaccharide (LPS) can often be used in strain identification, the objective was to investigate the antigenic properties and polyacrylamide gel electrophoretic pattern of 12 Brazilian strains of Bradyrhizobium japonicum that nodulate soybean and to compare them to standard strains. The close correlation between the LPS patterns obtained by SDS-PAGE and the serological analysis permitted us to assign the strains to nine groups different or the same as the standard strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, M.H., Eaglesham, A.R.J. & Hassouna, S. 1981 Examining serological diversity of “cowpea” rhizobia by the ELISA technique. Archives of Microbiology 130, 281–287.

    Google Scholar 

  • Berger, J.A., May, S.N., Berger, L.R. & Bohlool, B.B. 1979 Colorimetric enzyme-linked immunosorbent assay for the identification of strains of Rhizobium in culture and in the nodule of lentils. Applied and Environmental Microbiology 37, 642–646.

    Google Scholar 

  • Bohlool, B.B. & Schmidt, E.L. 1970 Immunofluorescent detection of Rhizobium japonicum in soils. Soil Science 110, 229–236.

    Google Scholar 

  • Brewin, N.J., Wood, E.A., Larkins, A.P., Galfre, G. & Butcher, G.W. 1986 Analysis of lipopolysaccharide from root bacteroids of Rhizobium leguminosarum using monoclonal antibodies. Journal General of Microbiology 132, 1959–1968.

    Google Scholar 

  • Carareto Alves, L.M. & Lemos, E.G.M. 1996 Use of lipopolysaccharide for immunological characterization of Bradyrhizobium sp. Soil Biology and Biochemistry 28 (9), 1227–1234.

    Google Scholar 

  • Carlson, R.W., Sanders, R.E., Napoli, C. & Albersheim, P. 1978 Host-symbiont interactions. III Purification and partial characterization of Rhizobium lipopolysaccharides. Plant Physiology 62, 912–917.

    Google Scholar 

  • Carlson, R.W. 1984 Heterogeneity of Rhizobium lipopolysaccharides. Journal of Bacteriology 158, 1012–1017.

    Google Scholar 

  • Carlson, R.W., Kalembasa, S., Turowski, D., Pochori, P. & Noel, K.D. 1987 Characterization of the lipopolysaccharide from a Rhizobium phaseoli mutant that is defective in infection thread development. Journal of Bacteriology 169, 4923–4928.

    Google Scholar 

  • Carrof, M., Chaby, R., Karibian, D., Perry, J., Deprun, C. & Szabp, L. 1990 Variations in the carbohydrate regions of Bordetella pertussis lipopolysaccharides: Electrophoretic, serological and structural features. Journal of Bacteriology 172, 1121–1128.

    Google Scholar 

  • Casella, S., Rossi, N. & Toffanin, A. 1993 Cell surface lipopolysaccharides of di.erent rhizobia. FEMS Microbiology Letters 93, 213–220.

    Google Scholar 

  • Cloonan, M.J. & Humphrey, B. 1976 A new method for strain identification of Rhizobium trifolii in nodules. Journal of Applied Bacteriology 40, 101–107.

    Google Scholar 

  • Date, R.A. & Decker, A.M. 1965 Minimal antigenic constitution of 28 strains of Rhizobium japonicum. Canadian Journal of Microbiology 11, 1–8.

    Google Scholar 

  • De Maagd, R., Van Rossum, C. & Lugtenberg, B.J.J. 1988 Recognition of individual strains of fast-growing rhizobia by using profilles of membrane proteins and lipopolysaccharides. Journal of Bacteriology 170, 3782–3785.

    Google Scholar 

  • De Maagd, R.A., Rao, S., Mulders, I.H.M., Goosen-De-Roo, L., Vanloosdrecht, M.C.M., Wijffelman, C.A. & Lugtenberg, B.J.J. 1989 Isolation and characterization of mutants of Rhizobium leguminosarum bv. viciae 248 with altered lipopolysaccharides: possible role of surface charge or hydrophobicity in bacterial release from the infection thread. Journal of Bacteriology 171, 1143–1150.

    Google Scholar 

  • Dudman, W.F. 1971 Antigenic Analysis of Rhizobium japonicum by immunodi.usion. Journal of Applied Bacteriology 21, 971–985.

    Google Scholar 

  • Fuhrmann, J. 1989 Serological distribution of Bradyrhizobium japonicum as influenced by soybean cultivar and sampling location. Soil Biology and Biochemistry 21, 1079–1081.

    Google Scholar 

  • Fuhrmann, J. 1993 Population diversity groupings of soybean bradyrhizobia. Advances in Agronomy 50, 67–105.

    Google Scholar 

  • Fuhrmann, J. & Wollum II, A.G. 1985 Simplified enzime-linked immunosorbent assay for routine identification of Rhizobium japonicum antigens. Applied and Environmental Microbiology 49, 1010–1013.

    Google Scholar 

  • Gibson, A.H., Dudman, W.F., Weaver, R.W., Horton, J.C. & Anderson, I.C. 1971 Variation within serogroup 123 of Rhizobium japonicum. Plant and Soil Specialy 1, 33–37.

    Google Scholar 

  • Harlow, E. & Lane, D. 1988 Immunoblotting. In: Antibodies: a laboratory manual, pp. 471–510. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Hickey, W.J., Loynachan, T.E., Ayanaba, A. & Zablotowicz, R.M. 1987 Diversity within lowa Bradyrhizobium japonicum serogroup 123. Soil Science Society of American journal 51, 941–946.

    Google Scholar 

  • Hitchcock, P.J. & Brown, T.M. 1983 Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. Journal of Bacteriology 154, 269–277.

    Google Scholar 

  • Kamicker, B.J. & Brill, W.J. 1986 Identification of Bradyrhizobium japonicum nodule isolates from Wisconsin soybean farms. Applied and Environmental Microbiology 51, 487–492.

    Google Scholar 

  • Keyser, H.H., Van Berkum, P. & Weber, D.F. 1982 A comparative study of the physiology of symbioses formed by Rhizobium japonicum, with Glycine max, Vigna unguiculata, and Macroptilium atropurpurem. Plant Physiology 70, 1626–1630.

    Google Scholar 

  • Keyser, H.H., Weber, D.F. & Uratsu, S.L. 1984 Rhizobium japonicum serogroup and hydrogenase phenotype distribution in 12 states. Applied and Environmental Microbiology 47, 613–615.

    Google Scholar 

  • Kishinevsky, B. & Bar-Joseph, M. 1978 Rhizobium strain identification in Arachis hypogaea nodules by enzyme-linked immunosorbent assay (ELISA). Canadian Journal of Microbiology 24, 1537–1543.

    Google Scholar 

  • Kuykendall, L.D., Saxena, B., Devine, T.E. & Udell, S.E. 1992 Genetic diversity in Bradyrhizobium japonicum and a proposal for Bradyrhizobium elkanii sp nov. Canadian Journal of Microbiology 38, 501–505.

    Google Scholar 

  • Laemmli, U.K. 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. London 227, 680–685.

    Google Scholar 

  • Martensson, A.M. & Gustafsson, J.G. 1985 Competition between Rhizobium trifolii strains for nodulation, during growth in a fermenter, and in soil-based inoculants, studied by ELISA. Journal General of Microbiology 131, 3077–3082.

    Google Scholar 

  • Means, U.M., Johnson, H.W. & Date, R.A. 1964 Quick serological method of classifying strains of Rhizobium japonicum in nodules. Journal of Bacteriology 87, 547–553.

    Google Scholar 

  • Means, U.M. & Johnson, H.W. 1968 Thermostability of antigens associated with serotype of Rhizobium japonicum. Journal of Applied Bacteriology 16, 203–206.

    Google Scholar 

  • Mpepereki, S. & Wollum li, A.G. 1991 Diversity of indigenous Bradyrhizobium japonicum in North Carolina soils. Biology and Fertility of Soils 11, 121–127.

    Google Scholar 

  • Murray, J., Fixter, L.M., Hamilton, I.D., Perombelon, M.C.M., Quinn, C.E. & Graham, D.C. 1990 Serogroups of potato pathogenic Erwinia carotovora strains: identification by lipopolysaccharide electrophoretic patterns. Journal of Applied Bacteriology 68, 213–240.

    Google Scholar 

  • Olsen, P.E., Rice, W.A., Stemke, G.W. & Page, W.J. 1983 Strain-specific serological techniques for the identification of Rhizobium meliloti in commercial alfafa inoculants. Canadian Journal of Microbiology 29, 225–230.

    Google Scholar 

  • Reyes, V.G. & Schmidt, E.L. 1979 Population densities of Rhizobium japonicum strain 123 estimated directley in soil and rhizospheres. Applied and Environmental Microbiology 37, 854–858.

    Google Scholar 

  • Rice, W.A., Olsen, P.E. & Page, W.J. 1984 ELISA evaluation of the competitive abilities of two Rhizobium meliloti strains. Canadian Journal of Microbiology 30, 1187–1190.

    Google Scholar 

  • Rumjanek, N.G., Dobert, Van Berkum, P. & Triplett, E.W. 1993 Common soybean inoculant strains in Brazil are members of Bradyrhizobium elkanii. Applied and Environmental Microbiology 59, 4371–4373.

    Google Scholar 

  • Russell, P.E. & Jones, D.G. 1975 Variation in the selection of Rhizobium trifolii by varieties of red and white clover. Soil Biology and Biochemistry 7, 15–18.

    Google Scholar 

  • Sadowsky, M.J., Tully, R.E., Cregan, P.B. & Keyser, H.H. 1987 Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybean. Applied and Environmental Microbiology 53, 2624–2630.

    Google Scholar 

  • Schmidt, E.L., Bankole, R.O. & Bohlool, B.B. 1968 Fluorescent-antibody approach to study of rhizobia in soil. Journal of Bacteriology 95, 1987–1992.

    Google Scholar 

  • Schmidt, E.L., Zidwick, M.J. & Abebe, H.M. 1986 Bradyrhizobium japonicum serocluster 123 and diversity among member isolates. Applied and Environmental Microbiology 51, 1212–1215.

    Google Scholar 

  • Trinick, M.J. 1969 Identification of legume nodule bacteroids by the fluorescent antibody reaction. Journal of Applied Bacteriology 32, 181–186.

    Google Scholar 

  • Tsai, C.M. & Frasch, C.E. 1982 A sensitive silver stain for detecting lipopolysaccharides in polyacrilamide gels. Analytical Biochemistry 119, 115–119.

    Google Scholar 

  • Vandenbosch, K.A., Brewin, N.J. & Kannenberg, E.L. 1989 Developmental regulation of a Rhizobium cell, surface antigen during growth of Pea root nodules. Journal of Bacteriology 171, 4537–4542.

  • Vargas, M.A.T., Mendes, I.C., Suhet, A.R. & Peres, J.R.R. 1993 Fixação Biológica do nitrogênio. In: Cultura da soja nos cerrados. ed. Arantes N.E. e Souza P.I.M. pp 159–182, Piracicaba: POTAFOS.

    Google Scholar 

  • Velez, D., Macmillan, J.D. & Miller, L. 1988 Production and use of monoclonal antibodies for identification of Bradyrhizobium japonicum strains. Canadian Journal of Microbiology 34, 88–92.

    Google Scholar 

  • Vincent, J.M. 1970 A Manual for the pratical study of root nodule bacteria. IBP Handbook n° 15. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Weber, D.F., Keyser, H.H. & Uratsu, S.L. 1989 Serological distribution of Bradyrhizobium japonicum from U.S. soybean production areas. Agronomical Journal 81, 786–789.

    Google Scholar 

  • Wollum II, A.G. 1987 Serological techniques for Bradyrhizobium and Rhizobium identification. In: Symbiotic Nitrogen Fixation Technology (G.H. Elkan, ed) 149–155, Dekker, New York. ISBN.

    Google Scholar 

  • Zevenhuizen, L.P.T.M., Scholten-Koerselman, I. & Posthumus, M.A. 1980 Lipopolysaccharides of Rhizobium. Archives of Microbiology 125, 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemos, E.G.M., Carareto-Alves, L.M. Electrophoretic patterns of lipopolysaccharides and antigenic analysis of soybean bradyrhizobia. World Journal of Microbiology and Biotechnology 15, 205–215 (1999). https://doi.org/10.1023/A:1008859523158

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008859523158

Navigation