Skip to main content
Log in

Alternative Uses of Waste Glasses: Issues on the Fabrication of Metal Fibre Reinforced Glass Matrix Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In order to investigate a potential use for recycled speciality glasses (specifically those containing hazardous elements), a processing route has been developed for the fabrication of metallic fibre mat reinforced glass matrix composites. Commercially available 3-dimensional stainless steel 316L fibre mats were used as the metal reinforcement, and a borosilicate glass which had been used previously in radiation experiments was used as the glass matrix. The fibre mats were infiltrated with a commercially available silica sol using electrophoretic deposition (EPD), and the glass matrix was laid in between infiltrated fibre mats prior to consolidation using uniaxial cold pressing. It was found that composites with sufficient integrity could be obtained from this recycled waste glass after sintering in air at 850°C for 1 h. The deposited silica remained amorphous at the processing temperature, providing a porous interface between the metallic reinforcement and the waste glass matrix. The processing issues involved in composite fabrication, namely, the EPD infiltration parameters for the silica sol, the quantity and subsequent effect of the impurities present in the waste glass, and the densification of the composite material on sintering, have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donald, I.W., Metcalfe, B. L., and Bye, A. D., ‘Preparation of a Novel Unidirectionally Aligned Microwire-Reinforced Glass Matrix Composite’, J. Mat. Sci. Lett. 7, 1988, 964-966.

    Google Scholar 

  2. Baran, G., Degrange, M., Roques-Carmes, C., and Wehbi, D., Fracture Toughness of Metal Reinforced Glass Composite, J. Mat. Sci. 25, 1990, 4211-4215.

    Google Scholar 

  3. Boccaccini, A. R., Ondracek, G., and Syhre, C., ‘Borosilicate Glass Matrix Composites Reinforced with Short Metal Fibres’, Glastech. Ber. Glass Sci. Technol. 67, 1994, 16-20.

    Google Scholar 

  4. Van Landuyt, P., Michel, D., Nicks, L., Streydio, J.-M., Munting, E., and Delannay, F., ‘Processing and Characterisation of a Biocompatible Glass Matrix Composite Reinforced with Titanium Fibres’, Silicates Industrial 9-10, 1995, 257-259.

    Google Scholar 

  5. Dlouhy, I. and Boccaccini, A. R., ‘Preparation, Microstructure and Mechanical Properties of Metal Particulate Glass-Matrix Composites’, Composites Science and Technology 56, 1996, 1415-1424.

    Google Scholar 

  6. Donald, I. W. and Metcalfe, B. L., ‘The Preparation, Properties and Applications of Some Glass-Coated Metal Filaments Prepared by the Taylor-Wire Process’, J. Mat. Sci. 31, 1996, 1139-1149.

    Google Scholar 

  7. Ashby, M. F., Blunt, F. J., and Bannister, M., ‘Flow Characteristics of Highly Constrained Metal Wires’, Acta Metall. 37, 1989, 1847-1857.

    Google Scholar 

  8. Trusty, P. A. and Yeomans, J. A., ‘The Toughening of Alumina with Iron - Effects of Iron Distribution on Fracture Toughness’, J. Euro. Ceram. Soc. 17(4), 1997, 495-504.

    Google Scholar 

  9. Sigl, L. S. and Fischmeister, H. F., ‘On the Fracture Toughness of Cemented Carbides’, Acta Metall. 36, 1988, 887.

    Google Scholar 

  10. Vaidya, R. U. and Subramanian, K. N., ‘Effect of Ribbon Orientation on the Fracture Toughness of a Metallic-Glass-Ribbon-Reinforced Glass-Ceramic Matrix Composite’, J. Am. Ceram. Soc. 73, 1990, 2962-2964.

    Google Scholar 

  11. Ducheyne, P. and Hench, L. L., ‘The Processing and Static Mechanical Properties of Metal Fibre Reinforced Bioglass’, J. Mat. Sci. 17, 1982, 595-606.

    Google Scholar 

  12. Illston, T. J., Ponton, C. B., Marquis, P. M., and Butler, E. G., ‘The Manufacture of Woven Fibre Ceramic Matrix Composites Using Electrophoretic Deposition’, in P. Duran and J. F. Fernandez (eds), Third Euroceramics, Vol. 1, Faenza Editrice Iberica, Madrid, 1993, pp. 419-424.

    Google Scholar 

  13. Trusty, P. A., Boccaccini, A. R., Butler, E. G., and Ponton, C. B., ‘Novel Techniques for Manufacturing Woven Fiber Reinforced Ceramic Matrix Composites. I. Preform Fabrication’, Mat. and Manuf. Processes 10, 1995, 1215-1226.

    Google Scholar 

  14. Boccaccini, A. R., Ovenstone, J., and Trusty, P. A., ‘Fabrication of Woven Metal Fibre Reinforced Glass Matrix Composites’, Appl. Comp. Mat. 4, 1997, 145-155.

    Google Scholar 

  15. Rutkovskij, A. E., Sarkisov, P. D., Ivashin, A. A., and Budov, V. V., ‘Glass Ceramic-Based Composites’, in V. I. Trefilov (ed.), Ceramic-and Carbon-Matrix Composites, Chapman and Hall, London, 1994, pp. 255-285.

    Google Scholar 

  16. Bekitherm, Heat Resistant Separation Materials, N. V. Bekaert and S. A. Zwevegem, Belgium, Product Information.

  17. Boccaccini, A. R., Bücker, M., Bossert, J., and Marszalek, K., ‘Glass Matrix Composites from Coal Flyash and Waste Glass’, Waste Management, 1997 (in press).

  18. Jablonski, G. L. and Tyron, S. S., ‘Overview of Coal Combustion By-Product Utilization’, in Proc. 5th Int. Pittsburgh Coal Conference, University of Pittsburgh, Pittsburgh, PA, 1988, pp. 15-21.

    Google Scholar 

  19. Boccaccini, A. R., Köpf, M., and Stumpfe, W., Glass-Ceramics from Filter Dusts from Waste Incinerators, Ceram. Int. 21, 1995, 231-235.

    Google Scholar 

  20. Ponton, C. B., Rawlings, R. D., and Rogers, P. S., ‘Mechanical Properties of Silceram Glass-Ceramics’, Proc. Brit. Ceram. Soc. 37, 1986, 229-234.

    Google Scholar 

  21. Lindig, M., ‘Recycling von Fernsehglas’, Glastech. Ber. Glass Sci. Technol. 67, 1994, N95-N97.

    Google Scholar 

  22. Greulich, N. and Hünlich, Th., ‘Elution von Bildröhrenglass zur Charakterisierung seines Deponieverhaltens’, Glastech. Ber. Glass Sci. Technol. 69, 1996, N77-N81.

    Google Scholar 

  23. Brown, I.W. M. and MacKenzie, K. J. D., ‘Process Design for the Production of a Ceramic-Like Body from Recycled Waste Glass’, J. Mat. Sci. 17, 1982, 2164-2170.

    Google Scholar 

  24. Clasen, R., Kravtchenko, I., and Ondracek, G., ‘Fibre Preparation from TV Glass for Fibre Reinforced Recycling Products’, in H. Warlimont (ed.), Environmental Aspects in Materials Research, DGM Oberursel, 1995, pp. 301-304.

  25. Boccaccini, A. R., Bücker, M., Trusty, P. A., Romero, M., and Rincón, J. Ma., ‘Sintering Behaviour of Compacts Made from Television Tube (TV) Glasses’, Glass Technology 38, 1997, 128-133.

    Google Scholar 

  26. Particle Technology Ltd., Borosilicate Glass Batch No. 2210, Derbyshire, UK, Product Information.

  27. Pernot, F. and Rogier, R., ‘Mechanical Properties of Phosphate Glass-Ceramic-316L Stainless-Steel Composites’, J. Mat. Sci. 28, 1993, 6676-6682.

    Google Scholar 

  28. Andrews, J. M., Collins, A. H., Cornish, D. C., and Dracass, J., ‘The Forming of Ceramic Bodies by Electrophoretic Deposition’, Proc. Br. Ceram. Soc. 12, 1969, 211-229.

    Google Scholar 

  29. Verwey, J.W.M., Imbusch, G. F., and Blasse, G., ‘Laser Excited Spectroscopy of Gd3+ Ions in Crystalline and Glass Borate Hosts with Comparable Composition’, Phys. Chem. Solids. 50(8), 1989, 813-820.

    Google Scholar 

  30. Brinker, C. J. and Scherer, G. W., Sol-Gel Science, Academic Press, New York, 1990.

    Google Scholar 

  31. Nowack, A., Studienarbeit, RWTH Aachen, Germany, 1996.

  32. Trusty, P. A. and Ponton, C. B., Progress Report III to DRA, IRC in Materials, The University of Birmingham, 1994, pp. 1-10.

  33. Trusty, P. A., Illston, T. J., Butler, E. G., Marquis, P. M., and Ponton, C. B., ‘A Comparison of the Processing Conditions for the Fabrication of SiC/SiO2 and Al2O3/Al2O3 Woven Fibre Reinforced Composites’, Advanced Synthesis and Processing of Composites and Advanced Ceramics 1, 1995, 257.

    Google Scholar 

  34. Trusty, P. A., Boccaccini, A. R., Butler, E. G., and Ponton, C. B., ‘The Development of Mullite Matrix Composites Using Electrophoretic Deposition’, Advanced Synthesis and Processing of Composites and Advanced Ceramics 2, 1996, 63-70.

    Google Scholar 

  35. Kaya, C., Trusty, P. A., and Ponton, C. B., ‘Manufacture of Alumina Fibre/Mullite Multilayer Nanoceramic Matrix Composites Using Electrophoretic Filtration Deposition (EFD) and Optimisation of the Process Parameters’, in Proc. 9th International Metallurgy & Materials Congress, Istanbul, Turkey, 1997, pp. 657-662.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trusty, P.A., Boccaccini, A.R. Alternative Uses of Waste Glasses: Issues on the Fabrication of Metal Fibre Reinforced Glass Matrix Composites. Applied Composite Materials 5, 207–222 (1998). https://doi.org/10.1023/A:1008858405686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008858405686

Navigation