Skip to main content
Log in

Iron accumulation in tobacco plants expressing soyabean ferritin gene

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

High iron-content transgenic tobacco plants have been produced by transfer via Agrobacterium tumefaciens of soyabean ferritin cDNA under the control of a CaMV 35S promoter. Immunoblot analysis of protein from transgenic tobacco plants suggested mature ferritin subunits are produced by cleavage of transit peptides. The expressed ferritin was observed in the tissues of leaves and stems. The maximal iron content of transformant leaves was approximately 30% higher than leaves from non-transformants. The increased iron content of each transformant was correlated with increases in ferritin content. These results demonstrate the potential of breeding high iron content crops by introduction of the ferritin gene

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benfey, P.N. and Chua, N.H. (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250, 959-66.

    Google Scholar 

  • Briat, J.F., Labouré, A.M., Laulhère, J.P., Lescure, A.M., Lobréaux, S., Pesey, H., Proudhon, D. and Wuytswinkel, O. (1995) Molecular and cellular biology of plant ferritins, in Abadía, J. (ed.) Iron Nutrition in soils and plants. The Netherlands, Kluwer Academic Publishers, pp. 265-276.

    Google Scholar 

  • Chrispeels, M.J. and Sadava, D.E. (1994) Plants, Genes, and Agriculture, USA: Jones and Bartlett Publishers, pp. 100-101.

    Google Scholar 

  • Crichton, R.R., Ponce-Ortiz, Y., Koch, M.H.J., Parfait, R. and Stuhrmann, H.B. (1978) Isolation and characterization of phytoferritin from pea (Pisum sativum) and lentil (Lens esculenta). Biochem. J. 171, 349-56.

    Google Scholar 

  • Engler-Blum, G., Meier, M., Frank, J. and Muller, G.A. (1993) Reduction of background problems in nonradioactive northern and southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal. Biochem. 210, 235-44.

    Google Scholar 

  • Holmberg, N., Lilius, G., Bailey, J.E. and Bülow, L. (1997) Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nature Biotech. 15, 244-7.

    Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. (1985) A simple and general method for transferring genes into plants. Science 227, 1229-31.

    Google Scholar 

  • Igarashi, O. (1986) pp. 102-110 in Shokuhin-Gaku. Yoshikawa, H. and Hosoya, N. (ed.). Koseikan.

  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) Gus fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-7.

    Google Scholar 

  • Kamachi, K., Yamaya, T., Hayakawa, T., Mae, T., and Ojima, K. (1992) Vascular bundle-specific localization of cytosolic glutamine synthetase in rice leaves. Plant Physiol. 99, 1481-6.

    Google Scholar 

  • Kampfenkel, K., Montagu, M.V., and Inzé, W. (1995) Effects of iron excess on Nicotiana plumbaginifolia plants. Implications to oxidative stress. Plant Physiol. 107, 725-35.

    Google Scholar 

  • Khan, M.R.I., Ceriotti, A., Tabe, L., Aryan, A., Mcnabb, W., Moore, A., Craig, S., Spencer, D. and Higgins, T.J.V. (1996) Accumulation of a sulphur-rich seed albumin from sunflower in the leaves of transgenic subterranean clover (Trifolium subterraneum L.). Transgenic Res. 5, 179-85.

    Google Scholar 

  • Kimata, Y. and Theil, E.C. (1994) Posttranscriptional regulation of ferritin during nodule development in soybean. Plant Physiol. 104, 263-70.

    Google Scholar 

  • Ko, M.P., Huang, P.Y., Huang, J.S. and Barker, K.R. (1987) The Occurrence of phytoferritin and its relationship to effectiveness of soybean nodules. Plant Physiol. 83, 299-305.

    Google Scholar 

  • Korcz, A. and Twardowski, T. (1992) The effect of selected heavy metal ions on the in vitro translation system of wheat germ — protective function of plant ferritin. Acta Physiol. Plant. 14, 185-90.

    Google Scholar 

  • Laulhére, J.P., Laboure, A.M. and Briat, J.F. (1989) Mechanism of the transition from plant ferritin to phytosiderin. J. Biol. Chem. 264, 3629-35.

    Google Scholar 

  • Laulhère, J.P., Lescure, A.M. and Briat, J.F. (1988) Purification and characterization of ferritins from maize, pea, and soyabean seeds. J. Biol. Chem. 263, 10289-94.

    Google Scholar 

  • Lescure, A.M., Proudhon, D., Pesey, H., Ragland, M., Theil, E.C. and Briat, J.F. (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc. Natl Acad. Sci. USA 88, 8222-6.

    Google Scholar 

  • Lobreaux, S. and Briat, J.F. (1991) Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem. J. 274, 601-6.

    Google Scholar 

  • Lobreaux, S., Yewdall, S.J., Briat, J.F. and Harrison, P.M. (1992a) Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin. Biochem. J. 288, 931-39.

    Google Scholar 

  • Lobreaux, S., Massenet, O. and Briat, J.F. (1992b) Iron induces ferritin synthesis in maize plantlets. Plant Mol. Biol. 19, 563-75.

    Google Scholar 

  • Matudaira, P. (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262, 10035-8.

    Google Scholar 

  • Mitra, A. and Zhang, Z. (1994) Expression of a human lactoferrin cDNA in tobacco cells produces antibacterial protein(s). Plant Physiol. 106, 977-81.

    Google Scholar 

  • Price, D. and Joshi, J.G. (1982) Ferritin: A zinc detoxicant and a zinc ion donor. Proc. Natl Acad. Sci. USA 79, 3116-9.

    Google Scholar 

  • Price, D.J., and Joshi, J.G. (1983) Ferritin. Binding of beryllium and other divalent metal ions. J. Biol. Chem. 258, 10873-880.

    Google Scholar 

  • Proudhon, D., Briat, J.F. and Lescure, A.M. (1989) Iron induction of ferritin synthesis in soybean cell suspensions. Plant Physiol. 90, 586-90.

    Google Scholar 

  • Ragland, M., Briat, J.F., Gagnon, J., Laulhere, J.P., Massenet, O. and Theil, E.C. (1990) Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J. Biol. Chem. 265, 18339-44.

    Google Scholar 

  • Sczekan, S.R. and Joshi, J.G. (1987) Isolation and characterization of ferritin from soybeans (Glycine max). J. Biol. Chem. 262, 13780-8.

    Google Scholar 

  • Sczekan, S.R. and Joshi, J.G. (1989) Metal-binding properties of phytoferritin and synthetic iron cores. Biochem. Biophys. Acta. 990, 8-14.

    Google Scholar 

  • Shure, M., Wessler, S. and Fedoroff, N. (1983) Molecular identification and isolation of Waxy locus in maize. Cell 35, 225-33.

    Google Scholar 

  • Spence, M.J., Henzl, M.T. and Lammers, P.J. (1991) The structure of a Phaseolus vulgaris cDNA encoding the iron storage protein ferritin. Plant Mol. Biol. 17, 499-504.

    Google Scholar 

  • Theil, E.C. (1987) Ferritin: structure, gene, regulation, and cellular function in animals, plants. and microorganisms. Annu. Rev. Biochem. 56 289-315.

    Google Scholar 

  • van der Mark, F., de Lange, T. and Bienfait, H.F. (1981) The role of ferritin in developing primary bean leaves under various light conditions. Planta 153, 338-42.

    Google Scholar 

  • van der Mark, F., van den Briel, M.L., van Oers, J.W.A.M. and Bienfait, H.F. (1982) Ferritin in bean leaves with constant and changing iron status. Planta 156, 341-4.

    Google Scholar 

  • van der Mark, F., van den Briel, W. and Huisman, H.G. (1983a) Phytoferritin is synthesized in vitro as a high-molecular-weight precursor. Biochem. J. 214, 943-50.

    Google Scholar 

  • van der Mark, F., Bienfait, F. and van den Ende, H. (1983b) Variable amounts of translatable ferritin mRNA in bean leaves with various iron contents. Biochem. Biophys. Res. Commun. 115, 463-9.

    Google Scholar 

  • Waldo, G.S., Wright, E., Whang, Z.H., Briat, J.F., Theil, E.C. and Sayers, D.E. (1995) Formation of the ferritin iron mineral occurs in plastids. Plant Physiol. 109, 797-802.

    Google Scholar 

  • Wandelt, C.I., Khan, M.R.I., Graig, S., Schroeder, H.E., Spencer, D. and Higgins, T.J.V. (1992) Vicilin with carboxyterminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant. J. 2, 181-92.

    Google Scholar 

  • Wicks, R.E. and Entsch, B. (1993) Functional genes found for three different plant ferritin subunits in the legume, Vigna unguiculata. Biochem. Biophys. Res. Comm. 192, 813-9.

    Google Scholar 

  • Yip, R. (1994) Iron deficiency: contemporary scientific issues and international programmatic approaches. J. Nutr. 124, 1479S-90S.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goto, F., Yoshihara, T. & Saiki, H. Iron accumulation in tobacco plants expressing soyabean ferritin gene. Transgenic Res 7, 173–180 (1998). https://doi.org/10.1023/A:1008836812714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008836812714

Navigation