Skip to main content
Log in

A study of ZnGa2O4 phosphor prepared by the solid method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the mixtures of ZnO and Ga2O3 powder with addition of LiCl flux were fired, the raw material mixing ratio, doping with Mn2+ and firing atmosphere effects on phosphor characteristics were investigated. When fired at 1200 °C, its phosphor powder emits a broad-band spectrum range between 375 nm to 700 nm, with a peak at 470 nm. The optimal composition of phosphors is about ZnO/Ga2O5=47/53. Manganese-doped ZnGa2O4, fired in air, exhibits two new emission bands with peaks at 506 nm (Mn2+ emission centre) and 666 nm (Mn4+ emission centre). However, if fired under vacuum, the emission spectrum presents only the 506 nm peak with increased intensity. The 666 nm emission peak derived from a little Mn2 oxidized to Mn4+ which substituted Ga3+ to occupy the B sites of the spinel structure. The emission intensity of the 506 nm peak of Zn1-xMnxGa2O4 is strongest when [Mn2+] x=0.006 and decreases markedly as the concentration of Mn2+ exceeds x=0.01. Most of the substitutional Mn2+ doping species in spinel ZnGa2O4 occupy the zinc sites. The luminescent band was associated to the spin-forbidden transition, 4T1(4G)→6A1 (6S). © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. From Associated Press and Washington Post, in Roanoke Times, World News, Section A3, May 26 (1993).

  2. C. L. Slupek, Y. Kazuyuki, S. Shinya, M. Suzuki, H. Yamaguchi and G. Wires, Aut. Eng. 97 (1989) 47.

    Google Scholar 

  3. S. Itoh, M. Yokoyama and K. Morimoto, J. Vac. Sci. Technol, A5, (1987) 3430.

    Google Scholar 

  4. S. Itoh, T. Kimizuka and T. Tonegawa, J. Electrochem. Soc. 136 (1989) 1819.

    Google Scholar 

  5. S. Itoh, H. Toki, Y. Sato, K. Morimoto and T. Kishine, ibid. 138 (1991) 1509.

    Google Scholar 

  6. K. H. Hsu, M. R. Yang and K. S. Chen, “The preparation and the spectrum properties of zinc gallium oxide” Tatang Journal 25 (1995) 399.

    Google Scholar 

  7. H. M. Kahan and R. M. Macfarlane, J. Chem. Phys. 54 (1971) 5197.

    Google Scholar 

  8. M. Wendschuh Josties et al., N. Jb. Miner, Mh. 18 (1995) 273.

    Google Scholar 

  9. W. L. Jolly, “Modern Inorganic Chemistry” 2nd Edn, (McGraw Hill, 1991) 435.

  10. D. T. Palumbor and J. J. Brown, Jr, J. Electrochem. Soc. 117 (1970) 1184.

    Google Scholar 

  11. L. J. Heidt, G. F. Koster and A. M. Johnson, J. Am. Chem. Soc. 80 (1959) 6471.

    Google Scholar 

  12. H. A. Klasens, P. Zalm and F. O. Huysman, Philips Res. Rep. 8 (1953) 441.

    Google Scholar 

  13. C. F. Yu and P. Lin, J. Appl. Phys. 79 (1996) 7191.

    Google Scholar 

  14. D. T. Palumbo and J. J. Brown, Jr, J. Electrochem. Soc. 118 (1971) 1159.

    Google Scholar 

  15. L. E. Shea, R. K. Datta and J. J. Brown, Jr, ibid. 141 (1994) 1950.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, KH., Yang, MR. & Chen, KS. A study of ZnGa2O4 phosphor prepared by the solid method. Journal of Materials Science: Materials in Electronics 9, 283–288 (1998). https://doi.org/10.1023/A:1008824706106

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008824706106

Keywords

Navigation