Skip to main content
Log in

Learning View Graphs for Robot Navigation

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We present a purely vision-based scheme for learning a topological representation of an open environment. The system represents selected places by local views of the surrounding scene, and finds traversable paths between them. The set of recorded views and their connections are combined into a graph model of the environment. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. In robot experiments, we demonstrate that complex visual exploration and navigation tasks can thus be performed without using metric information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachelder, I.A. and Waxman, A.M. 1995. A view-based neurocomputational system for relational map-making and navigation in visual environments. Robotics and Autonomous Systems, 16:267- 289.

    Article  Google Scholar 

  • Brooks, R.A. 1986. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, RA-2(1).

    Google Scholar 

  • Cartwright, B.A. and Collett, T.S. 1983. Landmark learning in bees. J. Comp. Physiol. A, 151:521-543.

    Google Scholar 

  • Chahl, J.S. and Srinivasan, M.V. 1996. Visual computation of egomotion using an image interpolation technique. Biol. Cybern., 74:405-411.

    Google Scholar 

  • Collett, T.S. 1992. Landmark learning and guidance in insects. Phil. Trans. R. Soc. Lond. B, 337:295-303.

    Google Scholar 

  • Collett, T.S. 1996. Insect navigation en route to the goal: Multiple strategies for the use of landmarks. J. Exp. Biol., 199:227-235.

    Google Scholar 

  • Franz, M.O., Schölkopf, B., and Bülthoff, H.H. 1997. Homing by parameterized scene matching. In Fourth Europ. Conf. on Artificial Life, P. Husbands and I. Harvey (Eds.), MIT Press: Cambridge, MA, pp. 236-245.

    Google Scholar 

  • Franz, M.O., Schölkopf, B., Georg, P., Mallot, H.A., and Bülthoff, H.H. 1997. Learning view graphs for robot navigation. In Proc. 1. Intl. Conf. on Autonomous Agents, W.L. Johnson (Ed.), ACM Press: New York, pp. 138-147.

    Google Scholar 

  • Gallistel, R. 1990. The Organization of Learning, MIT Press: Cambridge, MA.

    Google Scholar 

  • Gillner, S. and Mallot, H.A. 1997. Navigation and acquisition of spatial knowledge in a virtual maze. J. Cognitive Neuroscience. In press.

  • Goldman, S. 1953. Information Theory, Dover: New York.

    Google Scholar 

  • Hong, J., Tan, X., Pinette, B., Weiss, R., and Riseman, E.M. 1991. Image-based homing. In Proc. IEEE Intl. Conf. on Robotics and Automation, pp. 620-625.

  • Kuipers, B.J. and Byun, Y. 1991. A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robotics and Autonomous Systems, 8:47-63.

    Article  Google Scholar 

  • Lieblich, I. and Arbib, M.A. 1982. Multiple representations of space underlying behavior. Behavioral and Brain Sciences, 5:627-659.

    Google Scholar 

  • Mallot, H., Bülthoff, H., Georg, P., Schölkopf, B., and Yasuhara, K. 1995. View-based cognitive map learning by an autonomous robot. In Proc. ICANN'95-Int. Conf. on Artificial Neural Networks, F. Fogelman-Soulié and P. Gallinari (Eds.) EC2, Nanterre, France, Vol. II, pp. 381-386.

  • Mataric, M.J. 1991. Navigating with a rat brain: Aneurobiologically-inspired model for robot spatial representation. In From Animals to Animats, J.-A. Meyer and S.W. Wilson (Eds.), MIT Press: Cambridge, MA.

    Google Scholar 

  • O'Keefe, J. and Nadel, L. 1978. The Hippocampus as a Cognitive Map, Clarendon Press: Oxford.

  • O'Neill, M.J. 1991. Evaluation of a conceptual model of architectural legibility. Environment and Behavior, 23:259-284.

    Google Scholar 

  • Piaget, J. and Inhelder, B. 1967. The Child's Conception of Space, Norton: New York.

    Google Scholar 

  • Poucet, B. 1993. Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Rev., 100:163-182.

    Article  Google Scholar 

  • Röfer, T. 1995. Controlling a robot with image-based homing. Center for Cognitive Sciences, Bremen, Report 3/95.

    Google Scholar 

  • Schölkopf, B. and Mallot, H.A. 1995. View-based cognitive mapping and path planning. Adaptive Behavior, 3:311-348.

    Google Scholar 

  • Thrun, S. 1995. Exploration in active learning. In The Handbook of Brain Theory and Neural Networks, M.A. Arbib (Ed.), MIT Press, pp. 381-384.

  • Tolman, E.C. 1932. Purposive Behavior of Animals and Men, Irvington: New York.

    Google Scholar 

  • Wehner, R., Michel, B., and Antonsen, P. 1996. Visual navigation in insects: Coupling of egocentric and geocentric information. J. Exp. Biol., 199:129-140.

    Google Scholar 

  • Yagi, Y., Nishizawa, Y., and Yachida, M. 1995. Map-based navigation for a mobile robot with omnidirectional image sensor COPIS. IEEE Trans. Robotics Automat., 11:634-648.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, M.O., Schölkopf, B., Mallot, H.A. et al. Learning View Graphs for Robot Navigation. Autonomous Robots 5, 111–125 (1998). https://doi.org/10.1023/A:1008821210922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008821210922

Navigation