Skip to main content
Log in

Structure Control in Sol-Gel Silica Synthesis Using Ionene Polymers. 2: Evidence from Spectroscopic Analysis

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

By use of the Menshutkin reaction a variety of polyviologens have been synthesised containing bromide or tosylate counter-ions and varying numbers of methylene units. These ionene polymers have been shown to display lyotropic liquid crystalline behaviour. The effects of these polyviologens on the structure of growing silica networks synthesised using the sol-gel method were studied by spectroscopic analysis. Depending on the concentration, the type of polyviologen and whether a lyotropic liquid crystalline phase was used, evidence for an effect of these polymers on silica structure was observed using FTIR and 1H NMR spectroscopies. The presence and strength of an absorption band at 550 cm−1 (coupled with an absorption at 450 cm−1) was suggestive of some ordering occurring in these materials. Additionally, possible evidence of specific interactions involving the water molecules was obtained from 1H NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  2. S.A. Davis, S.L. Burkett, N.H. Mendelson, and S. Mann, Nature 385, 420 (1997).

    Google Scholar 

  3. S. Sato, T. Murahata, T. Suzuki, and T. Ohgawara, J. Mater. Sci. 25, 4880 (1990).

    Google Scholar 

  4. M.M. Helmkamp and M.E. Davies, Annu. Rev. Mater. Sci. 25, 161 (1995).

    Google Scholar 

  5. N.K. Raman, M.T. Anderson, and C.J. Brinker, Chem. Mater. 8, 1682 (1996).

    Google Scholar 

  6. A. Julbe, C. Balzer, J.M. Barthez, C. Guizard, A. Larbot, and L. Cot, J. Sol-Gel Sci. Tech. 4, 89 (1995).

    Google Scholar 

  7. S.L. Burkett and M.E. Davies, Chem. Mater. 7, 1453 (1995).

    Google Scholar 

  8. J.E. Mark, Polym. Eng. Sci. 36, 2905 (1996).

    Google Scholar 

  9. M.E. Davies, C.-T. Chen, S.L. Burkett, and R.F. Lobo, Mater. Res. Soc. Symp. Proc. 346, 831 (1994).

    Google Scholar 

  10. T. Dabadie, A. Ayral, C. Guizard, L. Cot, J.C. Robert, and O. Poncelet, Mater. Res. Soc. Symp. Proc. 346, 849 (1994).

    Google Scholar 

  11. S. Mann, J. Mater. Chem. 5, 935 (1995).

    Google Scholar 

  12. N.A.J.M. Sommerdijk, E.R.H. van Eck, and J.D. Wright, Chem. Commun., 159 (1997).

  13. M.J. Adeogun, J.P.A. Fairclough, J.N. Hay, and A.J. Ryan, J. Sol-Gel Sci. Tech. 13, 27 (1998).

    Google Scholar 

  14. M.J. Adeogun and J.N. Hay, Chem. Mater. 12, 767 (2000).

    Google Scholar 

  15. M.J. Adeogun and J.N. Hay, Polym. Int. 41, 123 (1996).

    Google Scholar 

  16. H. Han and P.K. Bhowmik, ACS Polym. Prepr. 36, 330 (1995).

    Google Scholar 

  17. A. Bertoluzza, C. Fagnano, V. Gottardi, and M. Gugliemi, J. Non-Cryst. Solids 48, 117 (1982).

    Google Scholar 

  18. F. Jiang, L. Hou, C. Zhu, and Z. Jiang, J. Non-Cryst. Solids 80, 571 (1986).

    Google Scholar 

  19. H. Yoshimo, K. Kamiya, and H. Nasu, J. Non-Cryst. Solids 126, 68 (1990).

    Google Scholar 

  20. F. Best and R.A. Condrate, Sr., J. Mat. Sci. Lett. 4, 994 (1984).

    Google Scholar 

  21. E.I. Kamitsos, A.P. Patsis, and G. Kordas, Phys. Rev. B 48, 12499 (1993).

    Google Scholar 

  22. D.L. Wood and E.M. Rabinovich, J. Non-Cryst. Solids 82, 171 (1986).

    Google Scholar 

  23. M.A.F. Robertson and K.A. Mauritz, ACS Polym. Prepr 37, 668 (1996).

    Google Scholar 

  24. C.J. Wung, W.M.K.P. Wijekoon, and P.N. Prasad, Polymer 34, 1174 (1993).

    Google Scholar 

  25. I. Artaki, M. Bradley, T.W. Zerda, and J. Jonas, J. Phys. Chem. 89, 4399 (1986).

    Google Scholar 

  26. M. Decottignies, J. Phalippou, and J. Zarzycki, J. Mat. Sci. 13, 2605 (1978).

    Google Scholar 

  27. G. Coudurier, G. Naccache, and J.C. Vedrine, J. Chem. Soc. Chem. Commun., 1413 (1982).

  28. B.D. Kay and R.A. Assink, Mater. Res. Soc. Symp. Proc. 73, 157 (1986).

    Google Scholar 

  29. G.S. Attard, N.R.B. Coleman, and J.M. Elliot, Studies in Surface Science and Catalysis 117, 89 (1998).

    Google Scholar 

  30. G.S. Attard, M. Edgar, and C.G. Göltner, Acta Materialia 46, 751 (1998).

    Google Scholar 

  31. G.S. Attard, J.C. Glyde, and C.G. Göltner, Nature 378, 366 (1995).

    Google Scholar 

  32. T. Dabadie, A. Ayral, C. Guizard, L. Cot, and P. Lacan, J. Mater. Chem. 6, 1789 (1996).

    Google Scholar 

  33. L. Porcar, J. Marignan, and T. Gulikkrzywicki, J. Sol-Gel Sci. Tech. 13, 99 (1998).

    Google Scholar 

  34. L. Porcar, P. Delord, and J. Marignan, Langmuir 14, 719 (1998).

    Google Scholar 

  35. H. Han and P.K. Bhowmik, TRIP 3, 199 (1995).

  36. H. Han and P.K. Bhowmik, ACS Polym. Prepr. 36, 328 (1995).

    Google Scholar 

  37. P.K. Bhowmik, S. Akhter, and H. Han, J. Polym. Sci. Polym. Chem. Ed. 33, 1927 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adeogun, M., Hay, J. Structure Control in Sol-Gel Silica Synthesis Using Ionene Polymers. 2: Evidence from Spectroscopic Analysis. Journal of Sol-Gel Science and Technology 20, 119–128 (2001). https://doi.org/10.1023/A:1008795321600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008795321600

Navigation