In vitro and in silico affinity fingerprints: Finding similarities beyond structural classes

Abstract

In this article, we review the use of in vitro and in silico affinity fingerprints as novel descriptors for similarity searches in molecular databases and QSAR analyses. An affinity fingerprint for a particular molecule is constructed as a vector of either its binding affinities, docking scores or superpositioning pseudoenergies against a reference panel of proteins or small molecules. In contrast to most other molecular descriptors, affinity fingerprints are not directly derived from molecular structures. As such, they offer the possibility to detect similarities amongst molecules independent of their structural scaffolds. In this report we introduce the Flexsim-S method, an extension of our previous work on virtual affinity fingerprints. Moreover, we demonstrate that virtual affinity fingerprint methods are comparable to some popular two-dimensional descriptors in terms ofcorrectly classifying compounds, but complementary with respect to the particular search results (hit lists).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Johnson, M.A. and Maggiora, G.M., Concepts and Applications of Molecular Similarity, Wiley, New York, NY, 1990.

    Google Scholar 

  2. 2.

    Brown, R.D. and Martin, Y.C., J. Chem. Inf. Comput. Sci., 36 (1999) 572.

    Article  Google Scholar 

  3. 3.

    Patterson, D.E., Cramer, R.D., Ferguson, A.M., Clark, R.D. and Weinberger, L.E., J. Med. Chem., 39 (1996) 3049.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Matter, H., J. Med. Chem., 40 (1997) 1219.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Briem, H. and Kuntz, I.D., J. Med. Chem., 39 (1996) 3401.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    DAYLIGHT, Version 4.62, DAYLIGHT Inc., Mission Viejo, CA.

  7. 7.

    ISIS, Version 2.1.4, Molecular Design Ltd., San Leandro, CA.

  8. 8.

    Weinstein, J.N., Kohn, K.W., Grever, M.R., Viswanadhan, V.N., Rubinstein, L.V., Monks, A.P., Scudiero, D.A., Welch, L., Koutsoukos, A.D., Chiausa, A.J. and Paull, K.D., Science, 258 (1992) 447.

    PubMed  CAS  Google Scholar 

  9. 9.

    Weinstein, J.N., Myers, T.G., O'Connor, P.M., Friend, S.H., Fornace, A.J., Kohn, K.W., Fojo, T., Bates, S.E., Rubinstein, L.V., Anderson, N.L., Buolamwini, J.K., van Osdol, W.W., Monks, A.P., Scudiero, D.A., Sausville, E.A., Zaharevitz, D.W., Bunow, B., Viswanadhan, V.N., Johnson, G.S., Wittes, R.E. and Paull, K.D., Science, 275 (1997) 343.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Kauvar, L.M., Higgins, D.L., Villar, H.O., Sportsman, J.R., Engqvist-Goldstein, A., Bukar, R., Bauer, K.E., Dilley, H. and Rocke, D.M., Chem. Biol., 2 (1995) 107.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Dixon, S.L. and Villar, H.O., J. Chem. Inf. Comput. Sci., 38 (1998) 1192.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    a. DOCK, Version 3.5, University of California, San Francisco, CA.

  13. b.

    Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    PubMed  CAS  Article  Google Scholar 

  14. c.

    Shoichet, B.K., Bodian, D.L. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 380.

    CAS  Article  Google Scholar 

  15. d.

    Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.

    CAS  Article  Google Scholar 

  16. 13.

    Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    PubMed  CAS  Google Scholar 

  17. 14.

    Lessel, U.F. and Briem, H., J. Chem. Inf. Comput. Sci., 40 (2000) 246.

    PubMed  CAS  Article  Google Scholar 

  18. 15.

    Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    PubMed  CAS  Article  Google Scholar 

  19. 16.

    Ghuloum, A.M., Sage, C.R. and Jain, A.N., J. Med. Chem., 42 (1999) 1739.

    PubMed  CAS  Article  Google Scholar 

  20. 17.

    Leo, A.J., Chem. Rev., 93 (1993) 1281.

    CAS  Article  Google Scholar 

  21. 18.

    Lemmen, C., Lengauer, T. and Klebe, G., J. Med. Chem., 41 (1998) 4502.

    PubMed  CAS  Article  Google Scholar 

  22. 19.

    SUGAL Genetic Algorithm package, Version 2.1, written by Dr Andrew Hunter at the University of Sunderland, U.K.

  23. 20.

    Sadowski, J., Schwab, C.H. and Gasteiger, J., CORINA 3D-Structure Generator Program description, 1997.

  24. 21.

    Gasteiger, J. and Marsili, M., Tetrahedron, 36 (1980) 3219.

    CAS  Article  Google Scholar 

  25. 22.

    Lemmen, C., Hiller, C. and Lengauer, T., J. Comput.-Aided Mol. Design, 12 (1998) 491.

    CAS  Article  Google Scholar 

  26. 23.a.

    Rarey, M. and Dixon, J.S., J. Comput.-Aided Mol. Design, 12 (1998) 471.

    CAS  Article  Google Scholar 

  27. b.

    http://cartan.gmd.de/ftrees/ftrees_home.html.

  28. 24.

    SYBYL, Version 6.5.3, HQSAR Module, Tripos Inc., St. Louis, MO.

  29. 25.

    DOCK, Version 4.0, University of California, San Francisco, CA.

  30. 26.

    Ginn, C.M.R., Ranade, S.S., Willett, P. and Bradshaw, J., In: Arabnia, H.R. and Zhu, D. (Eds.) Proceedings of the International Conference on Multisource-Multisensor Information Fusion, Fusion'98, CSREA Press, 1998, pp. 307–313.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Briem, H., Lessel, U.F. In vitro and in silico affinity fingerprints: Finding similarities beyond structural classes. Perspectives in Drug Discovery and Design 20, 231–244 (2000). https://doi.org/10.1023/A:1008793325522

Download citation

  • affinity fingerprints
  • database searching
  • moleculardescriptors
  • molecular similarity
  • QSAR
  • virtual screening