Genetic Resources and Crop Evolution

, Volume 46, Issue 6, pp 579–586 | Cite as

A phylogenetic analysis of the genus Carica L. (Caricaceae) based on restriction fragment length variation in a cpDNA intergenic spacer region

  • Mallikarjuna K. Aradhya
  • Richard M. Manshardt
  • Francis Zee
  • Clifford W. Morden


The phylogenetic relationships among twelve wild and cultivated species of Carica (Caricaceae) were analyzed using restriction fragment length variation in a 3.2-kb PCR amplified intergenic spacer region of the chloroplast DNA. A total of 138 fragments representing 137 restriction sites accounting for 5.8% of the amplified region were examined. Both parsimony and neighbor joining cluster analyses confirmed the close association among South American wild Carica species. However, cpDNA data did not support the traditional monophyly hypothesis for the evolution of Carica. Further, cpDNA analyses showed two basic evolutionary lineages within the genus Carica, one defined by cultivated C. papaya and another consisting of the remaining wild species from South America in a well resolved but poorly supported monophyletic assemblage. This evolutionary split in Carica strongly suggests that C. papaya diverged from the rest of the species early in the evolution of the genus and evolved in isolation, probably in Central America.

Caricaceae Carica cpDNA phylogenetic analysis restriction fragment length polymorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, V.A., B.D. Mishler & M.W. Chase, 1992. Character-state weighting for restriction site data in phylogenetic reconstruction, with an example from chloroplast DNA. In: P.S. Soltis, D.E. Soltis & J.J. Doyle (Eds.), Plant Molecular Systematics, Chapman and Hall, New York, NY, pp. 369–403.Google Scholar
  2. Arnold, M.L., C.M. Buckner & J.J. Robinson, 1991. Pollen mediated introgression and hybrid speciation in Louisiana irises. Proc. Natl. Acad. Sci. USA 88: 1398–1402.Google Scholar
  3. Badenes, M.L. & D.E. Parfitt, 1995. Phylogenetic relationships of cultivated Prunus species from an analysis of chloroplast DNA variation. Theor. Appl. Genet. 90: 1035–1041.Google Scholar
  4. Badillo, V., 1971. Monografia de la familia Caricacae. Publicada por la Asociacion de Profesores, Universidad Central de Venezuela, Maracay, 220 pp.Google Scholar
  5. Badillo, V., 1993. Caricaceae, Segundo Esquema. Publicada por la Asociacion de Profesores, Alcance 43, Universidad Central de Venezuela, Maracay, 111 pp.Google Scholar
  6. Briggs, J., 1987. Biogeography and Plate Tectonics. Elsevier, New York, NY.Google Scholar
  7. Brucher, H., 1989. Useful Plants of Neotropical Origin and Their Wild Relatives. Springer-Verlag, Berlin.Google Scholar
  8. Candolle, A. de, 1908. Origin of Cultivated Plants. D. Appleton & Co., New York, NY.Google Scholar
  9. Clegg, M.T. & G. Zurawski, 1992. Chloroplast DNA and the study of plant phylogeny: present and future prospects. In: P.S. Soltis, D.E. Soltis & J.J. Doyle (Eds.), Plant Molecular Systematics, Chapman and Hall, New York, NY, pp. 1–13.Google Scholar
  10. Darlington, C.D. & E.K.J. Ammal, 1945. Chromosome Atlas of Cultivated Plants. George Allen and Unwin Ltd., London.Google Scholar
  11. Doyle, J.J. & J.L. Doyle, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.Google Scholar
  12. Ettlinger, M.G., 1987. Systematic distribution and biochemical properties of glucosinolates (mustard oil glucoside). In:W. Greuter, B. Zimmer & H.D. Behnke (Eds.), Abstracts, XIV Int. Bot. Congr., Berlin, p. 280.Google Scholar
  13. Felsenstein, J., 1991. PHYLIP, phylogenetic inference package, version 3.4., University of Washington, Seattle, WA.Google Scholar
  14. Gentry, A., 1992. Distributional patterns of Central American and West Indian Bignoniaceae. In: S. Darwin & A. Welden (Eds.), Biogeography of Mesoameica, Tulane University, New Orleans, LA, pp. 111–125.Google Scholar
  15. Horovitz, S. & H. Jimenez, 1967. Cruzamientos interespecificos e intergenericos en Caricaceas y sus implicaciones fitotecnicas. Agronomia Tropical 17: 323–344.Google Scholar
  16. Jobin-Decor, M.P., G.C. Graham, R.J. Henry & R.A. Drew, 1997. RAPD and isozyme analysis of genetic relationships between Carica papaya and wild relatives. Gen. Resour. Crop Evol. 44: 1–7.Google Scholar
  17. Jorgensen, L.B., 1995. Stomatal myrosin cells in Caricaceae. Taxonomic implications for a glucosinolate-containing family. Nord. J. Bot. 15: 523–540.Google Scholar
  18. Kanzaki, S., K. Yonemori, A. Sugiura & S. Subhadrabandhu, 1997. Phylogenetic relationships between the jackfruit, the breadfruit and nine other Artocarpus spp. from RFLP analysis of an amplified region of cpDNA. Scientia Horticulturae 70: 57–66.Google Scholar
  19. Liston, A., L.H. Rieseberg & M.A. Hanson, 1992. Geographic partitioning of chloroplast DNA variation in the genus Datisca (Datiscaceae). P. Syst. Evol. 181: 121–132.Google Scholar
  20. Manshardt, R.M. & T.F. Wenslaff, 1989a. Zygotic polyembryony in interspecific hybrids of Carica papaya and C. cauliflora. J. Am. Soc. Hort. Sci. 114: 684–689.Google Scholar
  21. Manshardt, R.M. & T.F. Wenslaff, 1989b. Interspecific hybridization of papaya with other Carica species. J. Am. Soc. Hort. Sci. 114: 689–694.Google Scholar
  22. Mekako, H.U. & H.Y. Nakasone, 1975. Interspecific hybridization of papaya with other Carica species. J. Am. Soc. Hort. Sci. 100: 237–242.Google Scholar
  23. Morshidi, M., 1996. Genetic variability in Carica papaya and its related taxa. Dissertation submitted to the University of Hawaii, Honolulu, 282 pp.Google Scholar
  24. Morton, B.R. & M.T. Clegg, 1993. A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae). Curr. Genet. 24: 357–365.Google Scholar
  25. Nei, M. & W. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273.Google Scholar
  26. Ogihara, Y., T. Terachi & T. Sasakuma, 1991. Molecular Analysis of the Hot Spot Region Related to Length Mutations in Wheat Chloroplast DNAs. I. Nucleotide Divergence of Genes and Intergenic Spacer Regions Located in the Hot Spot Region. Genetics 129: 873–884.Google Scholar
  27. Palmer, J.D., R.K. Jansen, H.J. Michaels, M.W. Chase & J.R. Manhart, 1988. Chloroplast DNA variation and plant phylogeny. Ann. Mo. Bot. Gard. 75: 1180–1206.Google Scholar
  28. Parfitt, D.E. & M.L. Badenes, 1997. Phylogeny of the genus Pistacia as determined from analysis of the chloroplast genome. Proc. Natl. Acad. Sci. USA 94: 7987–7992.Google Scholar
  29. Prance, G.T., 1984. The peibaje, Guiliema gasipaes (H.B.K.) Bailey, and the papaya, Carica papaya L. In: D. Stone (Ed.), Pre-Columbian Plant Migration. Papers of the Peabody Museum of Archaelogy and Ethnology, Vol. 76, Harvard University Press, Cambridge, pp. 86–104.Google Scholar
  30. Purseglove, J.W., 1974. Tropical Crops: Dicotyledons. Longman, London, pp. 45–51.Google Scholar
  31. Raven, P.H. & D.I. Axelrod, 1974. Angiosperm biogeography and past continental movements. Ann. Mo. Bot. Gard. 61: 539–673.Google Scholar
  32. Rieseberg, L.H., M.A. Hanson & C.T. Philbrick, 1992. Androdioecy is derived from dioecy in Datiscaceae: Evidence from restriction site mapping of PCR-amplified chloroplast DNA fragments. Syst. Bot. 17: 324–336.Google Scholar
  33. Rodman, J.E., K.G. Karol, R.A. Price & K.J. Sytsma, 1996. Molecules, Morphology, and Dahlgren's Expanded Order Capparales. Syst. Bot. 21: 289–307.Google Scholar
  34. Rodman, J.E., R.A. Price, K.G. Karol, E. Conti, K.J. Sytsma & J.D. Palmer, 1993. Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants. Ann. Mo. Bot. Gard. 80: 686–699.Google Scholar
  35. Saitou, N. & M. Nei, 1987. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.Google Scholar
  36. Sawant, A.C., 1958. Crossing relationships in the genus Carica. Evolution 12: 263–266.Google Scholar
  37. Shinozaki, K., M. Ohme, M. Tanaka, T. Wakasugi, N. Hayashida, T. Matsubayashi, N. Zaita, J. Chunwongse, J. Obokata, K. Yamaguchi-Shinozaki, C. Ohto, K. Torazawa, B-Y. Meng, M. Sugita, H. Deno, T. Kamagoshira, K. Yamada, J. Kusuda, F. Takaiwa, A. Kato, N. Tohdoh, H. Shimada & M. Suguira, 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its organization and expression. EMBO J. 5: 2043–2049.Google Scholar
  38. Stehli, F. & S. Webb, 1985. A kaleidoscope of plates, faunal and floral dispersals, and sea level changes. In: F. Stehli & S. Webb (Eds.), The Great American Biotic Interchange, Plenum Press, New York, NY, pp. 3–16.Google Scholar
  39. Storey, W.B., 1976. Papaya, Carica papaya. In: N.W. Simmonds (Ed.), Evolution of Crop Plants, Longman, London, pp. 21–24.Google Scholar
  40. Swofford, D.L., 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign, IL.Google Scholar
  41. Wendel, J.F., J.McD. Stewart & J.H. Rettig, 1991. Molecular evidence of homoploid reticulate evolution among Australian species of Gossypium. Evolution 45: 694–711.Google Scholar
  42. Wolfe, K.H., W.-H. Li & P.M. Sharp, 1987. Rates of nucleotide substitution vary greatly among plant mitochondria, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84: 9054–9058.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Mallikarjuna K. Aradhya
    • 1
  • Richard M. Manshardt
    • 1
  • Francis Zee
    • 2
  • Clifford W. Morden
    • 3
  1. 1.Department of HorticultureUniversity of Hawaii at ManoaHonoluluU.S.A
  2. 2.U.S. Department of AgricultureNational Clonal Germplasm RepositoryHiloU.S.A
  3. 3.Department of Botany and Hawaii Evolutionary Biology ProgramUniversity of Hawaii at ManoaHonoluluU.S.A

Personalised recommendations