Skip to main content
Log in

Structural Development of Single Phase (Type I) Mullite Gels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Single phase (type I) mullite gels were prepared by sol-gel techniques starting from alkoxides (Al-butylate, tetraethylorthosilicate) and alkoxides plus nitrates (tetraethylorthosilicate, Al(NO3)3·9H2O). After drying at 150°C the aluminosilicate gels are non-crystalline and remain so up to ≈ 900°C. Above 900°C the gels transform into Al2O3-rich mullite plus a coexisting SiO2 phase. Structural studies on temperature-dependent dehydroxylation and condensation of the gels were carried out by large angle X-ray scattering, by infrared spectroscopy and by29 Si NMR spectroscopy. Heat-treatment (<150°C) of dried gels first causes removal of the H2O and organic residuals weakly bound at the open pore surfaces of the gels while the stronger, structurally bound OH groups are not affected. At temperatures <600°C OH groups are released and recombine to molecular H2O. If the temperature does not exceed 800°C the newly formed H2O is trapped in closed nanopores of the gel-network. Corresponding electron microscopical investigations reveal agglomerates of ≈10 nm sized primary particles virtually unaffected by the heat-treatment below 900°C. NMR investigation provided a new structural model on type and distribution of coordination polyhedra in aluminium silicate gel networks. Unlike Si, which according to 29Si NMR is always 4-fold coordinated with O, 27Al NMR spectroscopy revealed that Al cordination is more complex and is influenced by thermal treatment. Al occurs six-fold (octahedrally) and four-fold (tetrahedrally) coordinated. A third 27Al NMR signal which has been attributed to five-fold-coordinated Al in the literature increased in intensity with the heat-treatment. A comparison of NMR data of the gels with those of mullite suggests that tetrahedra triclusters (3 tetrahedra having one oxygen atom in common) occur as major structural units in aluminium silicate gels rather than five-fold-coordinated Al. Triclusters of tetrahedra may compensate the excess negative charge in the network caused by Si4+ → Al3+ substitution. The charge compensation model is supported by aluminosilicate gels doped with network modifiers (e.g., Na+). Since equimolar addition of Na+ compensates Si4+ → Al3+ substitution the formation of triclusters is no longer required which actually can be deduced from27 Al NMR studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1._I.A. Aksay, D.M. Dabbs, and M. Sarikaya, J. Amer. Ceram. Soc. 74, 2343 (1991).

    Google Scholar 

  2. H. Schneider, K. Okada, and J.A. Pask, Mullite and Mullite Ceramics (John Wiley & Sons, Chichester, 1994).

    Google Scholar 

  3. H. Schneider, D. Voll, B. Saruhan, J. Sanz, G. Schrader, C. Rüscher, and A. Mosset, J. Non-Cryst. Solids 178, 262 (1994).

    Google Scholar 

  4. M. Schmücker, H. Schneider, M. Poorteman, F. Cambier, and R.J. Meinhold, J. Europ. Ceram. Soc. 15, 1201 (1995).

    Google Scholar 

  5. M. Schmücker, W. Hoffbauer, unpublished results.

  6. H. Schneider, L. Merwin, and A. Sebald, J. Mater. Sci. 27, 805 (1992).

    Google Scholar 

  7. H.A. Levy, M.D. Danford, and A.H. Narten, Rept. No. ORNL-3960, Oak Ridge Natl. Lab., Tenn., 61 (1966)

  8. J. Krogh-Moe, A method for converting experimental X-ray intensities to an absolute scale, Acta Cryst. 9, 951 (1956).

    Google Scholar 

  9. B.E. Yoldas and D.E. Partlow, J. Mater. Sci. 27, 805 (1992).

    Google Scholar 

  10. K. Okada and N. Otsuka, J. Amer. Ceram. Soc. 69, 652 (1986).

    Google Scholar 

  11. Ph. Colomban, J. Mater. Sci. 24, 3011 (1989).

    Google Scholar 

  12. D. Voll, Ph.D. Thesis, University of Hannover, 1995.

  13. W.G. Fahrenholz, S.L. Hietala, D.M. Smith, A.J. Hurd, C.J. Brinker, and W.L. Earl, MRS Proceedings 180, 229 (1990).

    Google Scholar 

  14. T. Heinrich and F. Raether, J. Non-Cryst. Solids 147/148, 152 (1992).

    Google Scholar 

  15. D.W. Hoffmann, R. Roy, and S. Komarneni, J. Amer. Ceram. Soc. 67, 468 (1984).

    Google Scholar 

  16. W.E. Cameron, Am. Ceram. Soc. Bull. 56, 1003 (1977).

    Google Scholar 

  17. M. Fukuoka, Y. Onoda, S. Inoue, K. Wada, A. Nukui, and A. Makashima J. Sol-Gel Sci. Tech. 1, 47 (1993).

    Google Scholar 

  18. J.C. Pouxviel and J.P. Boilot, J. Mater. Sci. 24, 321 (1989).

    Google Scholar 

  19. J.C. Pouxviel, J.P. Boilot, A. Lecomte, and A. Dauger, J. Phys. 48, 921 (1987).

    Google Scholar 

  20. I. Jaymes and A. Douy, J. Europ. Ceram. Soc. 16, 155 (1996).

    Google Scholar 

  21. D.X. Li and W.J. Thomson, J. Amer. Ceram. Soc. 73, 964 (1990).

    Google Scholar 

  22. K.J.D. Mackenzie, R.H. Meinhold, J.E. Patterson, H. Schneider, M. Schmücker, and D. Voll, J. Europ. Ceram. Soc. 16, 1299 (1996).

    Google Scholar 

  23. D. Voll, A. Beran, and H. Schneider, J. Europ. Ceram. Soc. 18, 1101 (1998).

    Google Scholar 

  24. S. H. Risbud, R.J. Kirkpatrick, A.P. Taglialavore, and B. Montez, J. Amer. Ceram. Soc. 70, c10 (1987).

    Google Scholar 

  25. M. Mägi, E. Lipmaa, A. Samoson, G. Engelhardt, and A.R. Grimmer, J. Phys. Chem. 88, 1518 (1984).

    Google Scholar 

  26. G. Engelhardt and D. Michel, High Resolution Solid State NMR of Silicates and Zeolithes (John Wiley and Sons, New York, 1987).

    Google Scholar 

  27. M. Okuno, Y. Shimada, M. Schmücker, H. Schneider, W. Hoffbauer, and M. Jansen, J. Non-Cryst. Solids 210, 41 (1997).

    Google Scholar 

  28. C. Gerardin, S. Sundaresan, J. Bernziger, and A. Navrotsky, Chem. Mater. 6, 160 (1994).

    Google Scholar 

  29. A. Taylor and D. Holland, J. Non-Cryst. Solids 152, 1 (1993).

    Google Scholar 

  30. R.H. Meinhold, R.C.T. Slade, and T.W. Davies, Appl. Magn. Reson. 4, 141 (1993).

    Google Scholar 

  31. M. Schmücker and H. Schneider, Ber. Bunsenges. Phys. Chem. 100, 1550 (1996).

    Google Scholar 

  32. C.W. Burnham and M.J. Buerger, Z. Krist. 115, 269 (1961).

    Google Scholar 

  33. L.B. Alemany and G.W. Kirker, J. Amer. Chem. Soc. 108, 6158 (1986).

    Google Scholar 

  34. R.K. Sato, P.F. McMillan, P. Dennison, and R. Dupree, J. Phys. Chem. 95, 4483 (1991).

    Google Scholar 

  35. E.D. Lacy, Phys. Chem. Glasses 4, 234 (1963).

    Google Scholar 

  36. C.W. Burnham, Carnegie Inst.Wash. Year Book 63, 223 (1964).

    Google Scholar 

  37. R.J. Angel and C.T. Prewitt, Amer. Min. 71, 1476 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmücker, M., Schneider, H. Structural Development of Single Phase (Type I) Mullite Gels. Journal of Sol-Gel Science and Technology 15, 191–199 (1999). https://doi.org/10.1023/A:1008786023100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008786023100

Navigation