Skip to main content
Log in

On the Concentration Dependence of the Cluster Fractal Dimension in Colloidal Aggregation

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We have undertaken the task to calculate, by means of extensive numerical simulations and by different procedures, the cluster fractal dimension (d) of colloidal aggregates at different initial colloid concentrations. Our first approach consists in obtaining d from the slope of the log-log plots of the radius of gyration versus size of all the clusters formed during the aggregation time. In this way, for diffusion-limited colloidal aggregation, we have found a square root type of increase of the fractal dimension with concentration, from its zero-concentration value: d = d0 f + a φβ, with d0 f = 1.80 ± 0.01, a = 0.91 ± 0.03 and β = 0.51 ± 0.02, and where φ is the volume fraction of the colloidal particles. In our second procedure, we get the d via the particle-particle correlation function gcluster(r) and the structure function Scluster(q) of individual clusters. We first show that the stretched exponential law gcluster(r) = Ard −3e−(r/ξ) gives an excellent fit to the cutoff of the g(r). Here, A, a and ξ are parameters characteristic of each of the clusters. From the corresponding fits we then obtain the cluster fractal dimension. In the case of the structure function Scluster (q), using its Fourier transform relation with gcluster(r) and introducing the stretched exponential law, it is exhibited that at high q values it presents a length scale for which it is linear in a log-log plot versus q, and the value of the d extracted from this plot coincides with the d of the stretched exponential law. The concentration dependence of this new estimate of d, using the correlation functions for individual clusters, agrees perfectly well with that from the radius of gyration versus size. It is however shown that the structure factor S(q) of the whole system (related to the normalized scattering intensity) is not the correct function to use when trying to obtain a cluster fractal dimension in concentrated suspensions. The log-log plot of S(q) vs. q proportions a value higher than the true value. Nevertheless, it is also shown that the true value can be obtained from the initial slope of the particle-particle correlation function g(r), of the whole system. A recipe is given on how to obtain approximately this g(r) from a knowledge of the S(q), up to a certain maximum q value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.R. Kruyt (Ed.), Colloid Science (Elsevier, Amsterdam, 1952), Vol. 1.

    Google Scholar 

  2. B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  3. D.A. Weitz and M. Oliveria, Phys. Rev. Lett. 52, 1433 (1984).

    Google Scholar 

  4. D.W. Schaefer, J.E. Martin, P. Wiltzius, and D.S. Cannell, Phys. Rev. Lett. 52, 2371 (1984).

    Google Scholar 

  5. P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).

    Google Scholar 

  6. M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett. 51, 1123 (1983).

    Google Scholar 

  7. M.Y. Lin, H.M. Lindsay, D.A. Weitz, R.C. Ball, R. Klein, and P. Meakin, Nature 339, 360 (1989).

    Google Scholar 

  8. B.B. Mandelbrot, H. Kaufman, A. Vespignani, I. Yekutieli, and C.H. Lam, Europhys. Lett. 29, 599 (1995).

    Google Scholar 

  9. M. Lach-hab, A.E. González, and E. Blaisten-Barojas, Phys. Rev. E 57, 4520 (1998).

    Google Scholar 

  10. M. Carpineti, F. Ferri, M. Giglio, E. Paganini, and U. Perini, Phys. Rev. A 42, 7347 (1990).

    Google Scholar 

  11. H.F. van Garderen, W.H. Dokter, T.P.M. Beelen, R.A. van Santen, E. Pantos, M.A.J. Michels, and P.A.J. Hilbers, J. Chem. Phys. 102, 480 (1995).

    Google Scholar 

  12. H.F. van Garderen, E. Pantos, W.H. Dokter, T.P.M. Beelen, and R.A. van Santen, Modelling Simul. Mater. Sci. Eng. 2, 295 (1994).

    Google Scholar 

  13. ST.C. Pencea and M. Dumitrascu, in Fractal Aspects of Materials, edited by F. Family, P. Meakin, B. Sapoval, and R. Wool (Materials Research Society, Pittsburgh, 1995), p. 373.

    Google Scholar 

  14. A. Hasmy and R. Jullien, J. Non-Cryst. Sol. 186, 342 (1995).

    Google Scholar 

  15. A.E. González and G. Ramírez-Santiago, J. Coll. Interf. Sci. 182, 254 (1996).

    Google Scholar 

  16. A.E. González and G. Ramírez-Santiago, Phys. Rev. Lett. 74, 1238 (1995).

    Google Scholar 

  17. M. Carpineti and M. Giglio, Phys. Rev. Lett. 68, 3327 (1992).

    Google Scholar 

  18. M.D. Haw, M. Sievwright, W.C.K. Poon, and P.N. Pusey, Physica A 217, 231 (1995).

    Google Scholar 

  19. P. Meakin, Phys. Lett. A 107, 269 (1985).

    Google Scholar 

  20. M.E. Fisher and R.J. Burford, Phys. Rev. 156, 583 (1967).

    Google Scholar 

  21. S.K. Sinha, T. Freltoft, and J. Kjems, in Kinetics of Aggregation and Gelation, edited by F. Family and D.P. Landau (North Holland, Amsterdam, 1984), p. 87.

    Google Scholar 

  22. F. Ferri, M. Giglio, E. Paganini, and U. Perini, Europhys. Lett. 7, 599 (1988).

    Google Scholar 

  23. D. Majolino, F. Mallamace, P. Migliardo, N. Micali, and C. Vasi, Phys. Rev. A 40, 4665 (1989).

    Google Scholar 

  24. A.E. González, Phys. Rev. Lett. 71, 2248 (1993).

    Google Scholar 

  25. M. Lach-hab, A.E. González, and E. Blaisten-Barojas, Phys. Rev. E 54, 5456 (1996).

    Google Scholar 

  26. R.O. Watts and I.J. McGee, Liquid State Chemical Physics (Wiley, New York, 1976).

    Google Scholar 

  27. M.D. Haw, W.C.K. Poon, and P.N. Pusey, Physica A 208, 8 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, A.E., Lach-Hab, M. & Blaisten-Barojas, E. On the Concentration Dependence of the Cluster Fractal Dimension in Colloidal Aggregation. Journal of Sol-Gel Science and Technology 15, 119–127 (1999). https://doi.org/10.1023/A:1008783320920

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008783320920

Navigation