Predicting binding modes, binding affinities and `hot spots' for protein-ligand complexes using a knowledge-based scoring function

Abstract

The development of a new knowledge-based scoring function (DrugScore) and its power to recognize binding modes close to experiment, to predict binding affinities, and to identify ‘hot spots’ in binding pockets is presented. Structural information is extracted from crystallographically determined protein-ligand complexes using ReLiBase and converted into distance-dependent pair-preferences and solvent-accessible surface (SAS) dependent singlet preferences of protein and ligand atoms. The sum of the pair preferences and the singlet preferences is calculated using the 3D structure of protein-ligand complexes either taken directly from the X-raystructure or generated by the docking tool FlexX. DrugScore discriminates efficiently between well-docked ligand binding modes (root-mean-squaredeviation <2.0 Å with respect to a crystallographically determined reference complex) and computer-generated ones largely deviating from the native structure. For two test sets (91 and 68 protein-ligand complexes, taken from the PDB) the calculated score recognizes poses deviating <2 Å from the crystal structure on rank 1 in three quarters of all possible cases. Compared to the scoring function in FlexX, this is a substantial improvement. For five test sets ofcrystallographically determined protein-ligand complexes as well as for two sets of ligand geometries generated by FlexX, the calculated score is correlated with experimentally determined binding affinities. For a set of 16 crystallographically determined serine protease inhibitor complexes, a R2 value of 0.86 and a standard deviation of 0.95 log units is achievedas best result; for a set of 64 thrombin and trypsin inhibitors docked into their target proteins, aR2 value of 0.48 and a standard deviation of 0.7 log units is calculated. DrugScore performs better than other state-of-the-art scoring functions. To assess DrugScore's capability to reproduce the geometry of directional interactions correctly, ‘hotspots’ are identified and visualized in terms of isocontour surfaces inside the binding pocket. A dataset of 159 X-ray protein-ligand complexes is used to reproduce and highlight the actually observed ligand atom positions. In 74% of all cases, the actually observed atom type corresponds to an atom type predicted by the most favorable score at the nearest grid point. The prediction rate increases to 85% ifat least an atom type of the same class of interaction is suggested. DrugScore is fast to compute and includes implicitly solvation and entropy contributions. Small deviations in the 3D structureare tolerated and, since only contacts to non-hydrogenatoms are regarded, it does not require any assumptions on protonation states.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Muller, K., Perspect. Drug Discov. Design, 3 (1995) v.

    Article  Google Scholar 

  2. 2.

    Walters, W.P., Stahl, M.T. and Murcko, M.A., Drug Discov. Today, 3 (1998) 160.

    CAS  Article  Google Scholar 

  3. 3.

    Van Drie, J.H. and Lajiness, M.S., Drug Discov. Today, 3 (1998) 274.

    CAS  Article  Google Scholar 

  4. 4.

    Kubinyi, H., Curr. Opin. Drug Discov. Develop., 1 (1998) 4.

    CAS  Google Scholar 

  5. 5.

    Lengauer, T. and Rarey, M., Curr. Opin. Struct. Biol., 6 (1996) 402.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Kuntz, I.D., Meng, E.C. and Shoichet, B.K., Acc. Chem. Res., 27 (1994) 117.

    CAS  Article  Google Scholar 

  7. 7.

    Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Dixon, J.S., Proteins, Suppl. 1, (1997) 198.

    PubMed  Article  Google Scholar 

  11. 11.

    Beveridge, D.L. and DiCapua, F.M., Annu. Rev. Biophys. Biophys. Chem., 18 (1989) 431.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Kollman, P., Chem. Rev., 93 (1993) 2395.

    CAS  Article  Google Scholar 

  13. 13.

    Kollman, P.A., Acc. Chem. Res., 29 (1996) 461.

    CAS  Article  Google Scholar 

  14. 14.

    Dill, K.A., J. Biol. Chem., 272 (1997) 701.

    PubMed  CAS  Google Scholar 

  15. 15.

    Böhm, H.J., J. Comput.-Aided Mol. Design, 8 (1994) 243.

    Article  Google Scholar 

  16. 16.

    Böhm, H.J., J. Comput.-Aided Mol. Design, 12 (1998) 309.

    Article  Google Scholar 

  17. 17.

    Jain, A.N., J. Comput.-Aided Mol. Design, 10 (1996) 427.

    CAS  Article  Google Scholar 

  18. 18.

    Murray, C.W., Auton, T.R. and Eldridge, M.D., J. Comput.-Aided Mol. Design, 12 (1998) 503.

    CAS  Article  Google Scholar 

  19. 19.

    Rose, P. W., Scoring methods in ligand design, Proceedings of 2nd UCSF Course in Computer-Aided Molecular Design, San Francisco, CA, 1997.

  20. 20.

    Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., J. Am. Chem. Soc., 118 (1996) 3959.

    CAS  Article  Google Scholar 

  21. 21.

    Stahl, M. and Böhm, H.-J., J. Mol. Graph. Model, 16 (1998) 121.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Vajda, S., Sippl, M. and Novotny, J., Curr. Opin. Struct. Biol., 7 (1997) 222.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Jernigan, R.L. and Bahar, I., Curr. Opin. Struct. Biol., 6 (1996) 195.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Torda, A.E., Curr. Opin. Struct. Biol., 7 (1997) 200.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Mitchell, J.B.O., Laskowski, R.A., Alex, A., Forster, M.J. and Thornton, J.M., J. Comput. Chem., 20 (1999) 1177.

    CAS  Article  Google Scholar 

  26. 26.

    Wallqvist, A. and Covell, D.G., Proteins, 25 (1996) 403.

    PubMed  CAS  Google Scholar 

  27. 27.

    Wallqvist, A., Jernigan, R.L. and Covell, D.G., Protein Sci., 4 (1995) 1881.

    PubMed  CAS  Google Scholar 

  28. 28.

    Verkhivker, K., Appelt, K., Freer, S.T. and Villafranca, J.E., Protein Eng., 8 (1995) 677.

    PubMed  CAS  Google Scholar 

  29. 29.

    Sharp, K.A., Nicholls, A., Friedman, R. and Honig, B., Biochemistry, 30 (1991) 9686.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Pickett, S.D. and Sternberg, M.J., J. Mol. Biol., 231 (1993) 825.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    DeWitte, R.S. and Shaknovich, E.I., J. Am. Chem. Soc., 118 (1996) 11733.

    CAS  Article  Google Scholar 

  32. 32.

    Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer Jr., E.E., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    PubMed  CAS  Google Scholar 

  33. 33.

    Muegge, I. and Martin, Y.C., J. Med. Chem., 42 (1999) 791.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Muegge, I., Martin, Y.C., Hajduk, P.J. and Fesik, S.W., J. Med. Chem., 42 (1999) 2498.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Mitchell, J.B.O., Laskowski, R.A., Alex, A. and Thornton, J.M., J. Comput. Chem., 20 (1999) 1165.

    CAS  Article  Google Scholar 

  36. 36.

    Gohlke, H., Hendlich, K. and Klebe, G., J. Mol. Biol., 295 (2000) 337.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Hendlich, M., Acta Crystallogr., D 54 (1998) 1178.

    CAS  Google Scholar 

  38. 38.

    Verdonk, M.L., Cole, J.C. and Taylor, R., J. Mol. Biol., 289 (1999) 1093.

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Böhm, H.-J. and Klebe, G., Angew. Chem. Int. Ed. Engl., 35 (1996) 2566.

    Article  Google Scholar 

  40. 40.

    Sippl, M.J., Curr. Opin. Struct. Biol., 5 (1995) 229.

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Sippl, M.J., J. Mol. Biol., 213 (1990) 859.

    PubMed  CAS  Google Scholar 

  42. 42.

    Sippl, M.J., J. Comput.-Aided Mol. Design, 7 (1993) 473.

    CAS  Article  Google Scholar 

  43. 43.

    Godzik, A., Kolinski, A. and Skolnick, J., Protein Sci., 4 (1995) 2107.

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Miyazawa, S. and Jernigan, R.L., Proteins, 34 (1999) 49.

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Koehl, P. and Delarue, M., Proteins, 20 (1994) 264.

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Testa, B., Carrupt, P.A., Gaillard, P., Billois, F. and Weber, P., Pharm. Res., 13 (1996) 335.

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    SYBYL, Tripos Inc., St. Louis, MO.

  48. 48.

    Davis, A.M. and Teague, S.J., Angew. Chem. Int. Ed. Engl., 38 (1999) 736.

    CAS  Article  Google Scholar 

  49. 49.

    Burley, S.K. and Petsko, G.A., Science, 229 (1985) 23.

    PubMed  CAS  Google Scholar 

  50. 50.

    Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput.-Aided Mol. Design, 11 (1997) 425.

    CAS  Article  Google Scholar 

  51. 51.

    Hosur, M.V., Bhat, T.N., Kempf, D.J., Baldwin, E.T., Liu, B., Gulnik, S., Wideburg, N.E., Norbeck, D.W., Appelt, K. and Erickson, J.W., J. Am. Chem. Soc., 116 (1994) 847.

    CAS  Article  Google Scholar 

  52. 52.

    Kramer, B., Rarey, M. and Lengauer, T., Proteins, 37 (1999) 145.

    Article  Google Scholar 

  53. 53.

    Quiocho, F.A., Wilson, D.K. and Vyas, N.K., Nature, 340 (1989) 404.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Obst, U., De novo-Design und Synthese neuartiger, nichtpeptidischer Thrombin-Inhibitoren, Ph.D. Thesis, ETH Zürich, Zürich, 1997.

    Google Scholar 

  55. 55.

    Obst, U., Banner, D.W., Weber, L. and Diederich, F., Chem. Biol., 4 (1997) 287.

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    De Priest, S.A., Mayer, D., Naylor, C.B. and Marshall, G.R., J. Am. Chem. Soc., 115 (1993) 5372.

  57. 57.

    Bruno, I.J., Cole, J.C., Lommerse, J.P., Rowland, R.S., Taylor, R. and Verdonk, M.L., J. Comput.-Aided Mol. Design, 11 (1997) 525.

    CAS  Article  Google Scholar 

  58. 58.

    Bartlett, P.A. and Marlowe, C.K., Science, 235 (1987) 569.

    PubMed  CAS  Google Scholar 

  59. 59.

    Grobelny, D., Goli, U.B. and Galardy, R.E., Biochemistry, 28 (1989) 4948.

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    CAS  Article  Google Scholar 

  61. 61.

    Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchell, G.F., Smith, J.M. and Watson, D.G., J. Chem. Inf. Comput. Sci., 31 (1991) 187.

    CAS  Article  Google Scholar 

  62. 62.

    Hofmann, D.W.M. and Lengauer, T., J. Mol. Model, 4 (1998) 132.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gohlke, H., Hendlich, M. & Klebe, G. Predicting binding modes, binding affinities and `hot spots' for protein-ligand complexes using a knowledge-based scoring function. Perspectives in Drug Discovery and Design 20, 115–144 (2000). https://doi.org/10.1023/A:1008781006867

Download citation

  • binding affinity
  • docking
  • knowledge-based
  • protein-ligand interactions
  • scoring function
  • virtual screening