Skip to main content
Log in

Solution X-ray scattering as a probe of hydration-dependent structuring of aqueous solutions

  • Published:
Perspectives in Drug Discovery and Design

Abstract

We report on new X-ray solution scattering experiments and molecular dynamics simulations conducted for increasing solute concentrations of N-acetyl-amino acid-amides and -methylamides in water, for the amino acids leucine, glutamine, and glycine. As the concentration increases, the main diffraction peak of pure water at Q = 2.0 Å-1 shifts to smaller angle for the larger leucine and glutamine amino acids, and a new diffraction peak grows in at Q ∼ 0.8 Å-1 for only the hydrophobic amino acid leucine. The unaltered value of the peak position at Q ∼ 0.8 Å-1 over a large concentration range suggests that a stable and ordered leucine solute–solute distribution is sustained. Simulations of the distributions of leucines in water that reproduce the experimental observable show that mono-dispersed to small molecular aggregates of two to six hydrophobic amino acids are formed, as opposed to complete segregation of the hydrophobic solutes into one large cluster. The scattering results for the hydrophobic leucine amino acid are contrasted with experiments and simulations of the model hydrophilic side chain glutamine and the model backbone glycine. The self-assembly process of protein folding modeled with these experiments, in particular the condensation to a hydrophobic core, shares similar issues with the desolvation phenomena that are important in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ladbury, J.E., Chem. Biol., 3 (1996) 973.

    Google Scholar 

  2. Laskowski, R.A., Thornton, J.M., Humblet, C. and Singh, J., J. Mol. Biol., 259 (1996) 175.

    Google Scholar 

  3. Klebe, G., J. Mol. Biol., 237 (1994) 212.

    Google Scholar 

  4. Hobohm, U., Scharf, M., Schneider, R. and Sander, C., Protein Sci., 1 (1992) 409.

    Google Scholar 

  5. Eisenberg, D. and McLachlan, A.D., Nature, 319 (1986) 199.

    Google Scholar 

  6. Makhatadze, G.I. and Privalov, P.L., J. Mol. Biol., 232 (1993) 639.

    Google Scholar 

  7. Murphy, K.P. and Gill, S.J., J. Mol. Biol., 222 (1991) 699.

    Google Scholar 

  8. Honig, B. and Nicholls, A., Science, 268 (1995) 1144.

    Google Scholar 

  9. Head-Gordon, T., Proc. Natl. Acad. Sci. USA, 92 (1995) 8308.

    Google Scholar 

  10. Pertsemlidis, A., Saxena, A.M., Soper, A.K., Head-Gordon, T. and Glaeser, R.M., Proc. Natl. Acad. Sci. USA, 93 (1996) 10769.

    Google Scholar 

  11. Head-Gordon, T., Sorenson, J.M., Pertsemlidis, A. and Glaeser, R.M., Biophys. J., 73 (1997) 2106.

    Google Scholar 

  12. Pertsemlidis, A., Soper, A.K., Sorenson, J.M. and Head-Gordon, T., Proc. Natl. Acad. Sci. USA, 96 (1999) 481.

    Google Scholar 

  13. Sorenson, J.M., Hura, G., Soper, A.K., Pertsemlidis, A. and Head-Gordon, T., J. Phys. Chem. B, 103 (1999) 5413.

    Google Scholar 

  14. Pertsemlidis, A., Ph.D. Thesis, University of California at Berkeley, 1995.

    Google Scholar 

  15. Sorenson, J.M. and Head-Gordon, T., Fold Design, 3 (1998) 523.

    Google Scholar 

  16. Ibers, J.A. and Hamilton, W.C., International Tables for X-ray Crystallography, Vols. 2– 4, 3rd edition, Kluwer Academic Publishers, Dordrecht, 1989.

    Google Scholar 

  17. Nishikawa, K. and Kitagawa, N., Bull. Chem. Soc. Jpn., 53 (1980) 2804.

    Google Scholar 

  18. Hadju, F., Acta Crystallogr., A28 (1972) 250.

    Google Scholar 

  19. Narten, A.H. and Levy, H.A., J. Chem. Phys., 55 (1971) 2263.

    Google Scholar 

  20. Martyna, G.J., Tuckerman, M.E., Tobias, D.J. and Klein, M.L., Mol. Phys., 87 (1996) 1117.

    Google Scholar 

  21. Nosé, S., In Meyer, M. and Pontikis, V. (Eds) Computer Simulations inMaterial Science, Kluwer Academic Publishers, Dordrecht, 1991, p. 21.

    Google Scholar 

  22. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

    Google Scholar 

  23. Andersen, H.C., J. Comput. Phys., 52 (1983) 24.

    Article  Google Scholar 

  24. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5179.

    Google Scholar 

  25. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F. and Hermanns, J., In Pullman, B. (Ed.) Intermolecular Forces, Reidel, Dordrecht, 1981, p. 331.

    Google Scholar 

  26. Magini, M., Licheri, G., Paschina, G., Piccaluga, G. and Pinna, G., X-ray Diffraction of Ions in Aqueous Solution: Hydration and Complex Formation, CRC Press, Boca Raton, FL, 1988.

    Google Scholar 

  27. Egelstaff, P.A., An Introduction to the Liquid State, Oxford Series on Neutron Scattering in Condensed Matter, Oxford University Press, Oxford, 1992. 118

    Google Scholar 

  28. Hansen, J.P. and McDonald, I.R., Theory of Simple Liquids, 2nd edition, Academic Press, London, 1986.

    Google Scholar 

  29. Powell, D.H., Neilson, G.W. and Enderby, J.E., J. Phys. Condens. Matter, 1 (1989) 8721.

    Google Scholar 

  30. Sorenson, J.M., Hura, G. and Head-Gordon, T., in preparation.

  31. Wright, P.E., Dyson, H.J. and Lerner, R.A., Biochemistry, 27 (1988) 7167.

    Google Scholar 

  32. Dyson, H.J., Rance, M., Houghten, R.A., Lerner, R.A. and Wright, P.E., J. Mol. Biol., 201 (1988) 161.

    PubMed  Google Scholar 

  33. Marqusee, S. and Baldwin, R.L., In Gierasch, L.M. and King, J. (Eds.) Protein Folding: Deciphering the Second Half of the Genetic Code, American Association for the Advancement of Science, Washington, DC, 1990, p. 85.

    Google Scholar 

  34. Wright, P.E., Dyson, H.J., Waltho, J.P. and Lerner, R.A., In Gierasch, L.M. and King, J. (Eds.) Protein Folding: Deciphering the Second Half of the Genetic Code, American Association for the Advancement of Science, Washington, DC, 1990, p. 85.

    Google Scholar 

  35. Tobias, D.J., Sneddon, S.F. and Brooks III, C.L., J. Mol. Biol., 216 (1990) 783.

    Google Scholar 

  36. Tobias, D.J. and Brooks III, C.L., Biochemistry, 30 (1991) 6059.

    Google Scholar 

  37. Tobias, D.J., Sneddon, S.F. and Brooks III, C.L., J. Mol. Biol., 227 (1992) 1244.

    Google Scholar 

  38. Hummer, G., Garde, S., Garcia, A.E., Paulaitis, M.E. et al., J. Phys. Chem., B102 (1998) 10469.

    Google Scholar 

  39. Hummer, G. and Garde, S., Phys. Rev. Lett., 80 (1998) 4193.

    Google Scholar 

  40. Lum, K., Chandler, D. and Weeks, J.D., submitted.

  41. Rank, J.A. and Baker, D., Protein Sci., 6 (1997) 347.

    Google Scholar 

  42. Ben-Naim, A., J. Phys. Chem., 94 (1990) 6893.

    Google Scholar 

  43. Dill, K.A., Biochemistry, 29 (1990) 7133.

    PubMed  Google Scholar 

  44. Franks, F.,Water, A Comprehensive Treatise, Plenum, New York, NY.

  45. Stillinger, F.H., Science, 209 (1980) 451.

    Google Scholar 

  46. Rick, S.W., Stuart, S.J. and Berne, B.J., J. Chem. Phys., 101 (1994) 6141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hura, G., Sorenson, J.M., Glaeser, R.M. et al. Solution X-ray scattering as a probe of hydration-dependent structuring of aqueous solutions. Perspectives in Drug Discovery and Design 17, 97–118 (1999). https://doi.org/10.1023/A:1008778724866

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008778724866

Navigation