Lipophilicity in trans-bilayer transport and subcellular pharmacokinetics

Abstract

The aim of subcellular pharmacokinetics in drug design is to model drug disposition and response as a function of the properties of drugs and biosystems involved and the observation time. Biosystems are represented by systems of alternating membranes and aqueous phases that differ in acidity and contain low-molecular cell constituents, enzymes and other proteins. The resulting disposition models are combined with linear free-energy assumptions, drug/receptor binding kinetics and relationships between receptor binding and response to produce model-based quantitativestructure–(time–)activity relationships, QS(T)AR. This review summarizes the present status of subcellular pharmacokinetics with emphasis on passive trans-bilayer transport. In particular, mechanisms of transport are analyzed with respect to amphiphilicity and lipophilicity. The overall rate of transport is strongly governed by amphiphilicity, the tendency of drug molecules to adsorb to the bilayer/water interface. Depending on amphiphilicity, the time needed for a drug to cross a single bilayer ranges from seconds to days. The main advantage of the subcellular pharmacokinetic approach is that the resulting models, once calibrated for a given biosystem, provide a detailed recipe for tailoring the drug properties to ensure optimum disposition.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Prentis, R.A., Lis, Y. and Walker, S.R., Br. J. Clin. Pharmacol., 25 (1988) 387.

    PubMed  CAS  Google Scholar 

  2. 2.

    Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Adv. Drug Deliv. Rev., 23 (1997) 3.

    CAS  Article  Google Scholar 

  3. 3.

    Kansy, M., Senner, F. and Gubernator, K., J. Med. Chem., 41 (1998) 1007.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Ajay, A., Walters, W.P. and Murcko, M.A., J. Med. Chem., 41 (1998) 3314.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Rowland, M. and Tozer, T.N., Clinical Pharmacokinetics. Concepts and Applications, 3rd ed., Williams & Wilkins, Media, PA, 1995.

    Google Scholar 

  6. 6.

    Blakey, G.E., Nestorov, I.A., Arundel, P.A., Aarons, L.J. and Rowland, M., J. Pharmacokinet. Biopharm., 25 (1997) 277.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Chou, C.H., Aarons, L. and Rowland, M., J. Pharmacokinet. Biopharm., 26 (1998) 595.

    PubMed  CAS  Google Scholar 

  8. 8.

    Penniston, J.T., Beckett, L., Bentley, D.L. and Hansch, C., Mol. Pharmacol., 5 (1969) 333.

    PubMed  CAS  Google Scholar 

  9. 9.

    Ueda, K., Taguchi, Y. and Morishima, M., Semin. Cancer Biol., 8 (1997) 151.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Leo, A. and Weininger, D., Biobyte Corp., Claremont, CA, 1995.

  11. 11.

    Yoshino, A., Yoshida, T., Okabayashi, H., Kamaya, H. and Ueda, I., J. Colloid Interface Sci., 198 (1998) 319.

    CAS  Article  Google Scholar 

  12. 12.

    Hansch, C. and Fujita, T., J. Am. Chem. Soc., 86 (1964) 1616.

    CAS  Article  Google Scholar 

  13. 13.

    Moring, J., Niego, L.A., Ganley, L.M., Trumbore, M.W. and Herbette, L.G., Biophys. J., 67 (1994) 2376.

    PubMed  CAS  Google Scholar 

  14. 14.

    Eisenberg, D., Weiss, R.M. and Terwilliger, T.C., Nature, 299 (1982) 371.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Brasseur, R., Vandenbosch, C., Van den Bossche, H. and Ruysschaert, J.M., Biochem. Pharmacol., 32 (1983) 2175.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Balaz, S., Wiese, M. and Seydel, J.K., J. Pharm. Sci., 81 (1992) 849.

    PubMed  CAS  Google Scholar 

  17. 17.

    Kamp, F. and Hamilton, J.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 11367.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Classen, J., Deuticke, B. and Haest, C.W., J. Membr. Biol., 111 (1989) 169.

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Chowhan, Z.T., Yotsuyanagi, T. and Higuchi, W.I., Biochim. Biophys. Acta, 266 (1972) 320.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Serra, M.V., Kamp, D. and Haest, C.W., Biochim. Biophys. Acta, 1282 (1996) 263.

    PubMed  Article  Google Scholar 

  21. 21.

    Kedem, O. and Katchalsky, A., Biochim. Biophys. Acta, 27 (1958) 229.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Subczynski, W.K., Hyde, J.S. and Kusumi, A., Proc. Natl. Acad. Sci. USA, 86 (1989) 4474.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Cabrini, G. and Verkman, A.S., Biochim. Biophys. Acta, 862 (1986) 285.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Marx, U., Lassmann, G., Wimalasena, K., Muller, P. and Herrmann, A., Biophys. J., 73 (1997) 1645.

    PubMed  CAS  Google Scholar 

  25. 25.

    Kuzelova, K. and Brault, D., Biochemistry, 33 (1994) 9447.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Regev, R. and Eytan, G.D., Biochem. Pharmacol., 54 (1997) 1151.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Pebay, P.E., Dufourc, E.J. and Szabo, A.G., Biophys. Chem., 53 (1994) 45.

    Article  Google Scholar 

  28. 28.

    Wenk, M.R., Alt, T., Seelig, A. and Seelig, J., Biophys. J., 72 (1997) 1719.

    PubMed  CAS  Google Scholar 

  29. 29.

    Marrink, S.J., Jahnig, F. and Berendsen, H.J., Biophys. J., 71 (1996) 632.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Wilson, M.A. and Pohorille, A., J. Am. Chem. Soc., 118 (1996) 6580.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Marrink, S.J. and Berendsen, H.J.C., J. Phys. Chem., 100 (1996) 16729.

    CAS  Article  Google Scholar 

  32. 32.

    Bassolino, D., Alper, H. and Stouch, T.R., Drug Des. Discov., 13 (1996) 135.

    PubMed  CAS  Google Scholar 

  33. 33.

    Pidgeon, C., Ong, S.W., Liu, H.L., Qiu, X.X., Pidgeon, M., Dantzig, A.H., Munroe, J., Hornback, W.J., Kasher, J.S., Glunz, L. and Sczerba, T., J. Med. Chem., 38 (1995) 590.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Yang, C.Y., Cai, S.J., Liu, H.L. and Pidgeon, C., Adv. Drug Deliv. Rev., 23 (1997) 229.

    Article  Google Scholar 

  35. 35.

    Van de Waterbeemd, H. and Kansy, M., Chimia, 46 (1992) 299.

    CAS  Google Scholar 

  36. 36.

    Chikhale, E.G., Ng, K.Y., Burton, P.S. and Borchardt, R.T., Pharm. Res., 11 (1994) 412.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Leahy, D.E., Taylor, P.J. and Wait, A.R., Quant. Struct.—Act. Relat., 8 (1989) 17.

    CAS  Google Scholar 

  38. 38.

    Xiang, T.X. and Anderson, B.D., J. Membr. Biol., 140 (1994) 111.

    PubMed  CAS  Google Scholar 

  39. 39.

    Balaz, S. and Sturdik, E., In Tichy, M. (Ed.) QSAR in Toxicology and Xenobiochemistry, Elsevier, Amsterdam, 1985, pp. 257–267.

    Google Scholar 

  40. 40.

    Kubinyi, H., J. Pharm. Sci., 67 (1978) 262.

    PubMed  CAS  Google Scholar 

  41. 41.

    Van de Waterbeemd, H., van Bakel, H. and Jansen, A., J. Pharm. Sci., 70 (1981) 1081.

    PubMed  CAS  Google Scholar 

  42. 42.

    Kubinyi, H., J. Med. Chem., 20 (1977) 625.

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Balaz, S., Sturdik, E., Hrmova, M., Breza, M. and Liptaj, T., Eur. J. Med. Chem., 19 (1984) 167.

    CAS  Google Scholar 

  44. 44.

    Dearden, J.C., Environ. Health Perspect., 61 (1985) 203.

    PubMed  CAS  Google Scholar 

  45. 45.

    Flynn, G.L. and Yalkowsky, S.H., J. Pharm. Sci., 61 (1972) 838.

    PubMed  CAS  Google Scholar 

  46. 46.

    Balaz, S., Sturdik, E., Dibus, I., Ebringer, L., Stibranyi, L. and Rosenberg, M., Chem.-Biol. Interact., 55 (1985) 93.

    PubMed  CAS  Google Scholar 

  47. 47.

    Collander, R., Acta Chem. Scand., 5 (1951) 774.

    CAS  Article  Google Scholar 

  48. 48.

    Balaz, S., Quant. Struct.—Act. Relat., 13 (1994) 381.

    CAS  Google Scholar 

  49. 49.

    Balaz, S. and Sturdik, E., Gen. Physiol. Biophys., 4 (1985) 105.

    PubMed  CAS  Google Scholar 

  50. 50.

    Dvorsky, R., Balaz, S. and Sawchuk, R.J., J. Theor. Biol., 185 (1997) 213.

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Balaz, S., Sturdik, E. and Augustin, J., Biophys. Chem., 24 (1986) 135.

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Balaz, S., SAR QSAR Environ. Sci., 4 (1995) 177.

    CAS  Google Scholar 

  53. 53.

    Balaz, S., Sturdik, E. and Augustin, J., Bull. Math. Biol., 50 (1988) 367.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Higuchi, T. and Davis, S.S., J. Pharm. Sci., 59 (1970) 1376.

    PubMed  CAS  Google Scholar 

  55. 55.

    Hyde, R.M., J. Med. Chem., 18 (1975) 231.

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Martin, Y.C. and Hackbarth, J.J., J. Med. Chem., 19 (1976) 1033.

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Martin, Y.C., In Franke, R. and Oehme, P. (Eds.) Quantitative Structure—Activity Analysis, Akademie-Verlag, Berlin, 1978, pp. 351–358.

    Google Scholar 

  58. 58.

    Martin, Y.C., Quantitative Drug Design. A Critical Introduction, Marcel Dekker, New York, NY, 1978.

    Google Scholar 

  59. 59.

    Martin, Y.C., In Yalkowsky, S.H., Sinkula, A.A. and Valvani, S.C. (Eds.) Physical Chemical Properties of Drugs, Marcel Dekker, New York, NY, 1980, pp. 49–110.

    Google Scholar 

  60. 60.

    Martin, Y.C., In Martin, Y.C., Kutter, E. and Austel, V. (Eds.) Modern Drug Research. Paths to Better and Safer Drugs, Marcel Dekker, New York, NY, 1989, pp. 161–216.

    Google Scholar 

  61. 61.

    Pirselova, K. and Balaz, S., Chemometr. Intell. Lab. Syst., 24 (1994) 193.

    CAS  Article  Google Scholar 

  62. 62.

    Balaz, S., Sturdik, E. and Tichy, M., Quant. Struct.—Act. Relat., 4 (1985) 77.

    CAS  Google Scholar 

  63. 63.

    Balaz, S., Wiese, M., Chi, H.L. and Seydel, J.K., Anal. Chim. Acta, 235 (1990) 195.

    CAS  Article  Google Scholar 

  64. 64.

    Watanabe, J. and Kozaki, A., Chem. Pharm. Bull., 26 (1978) 665.

    PubMed  CAS  Google Scholar 

  65. 65.

    Balaz, S., Pirselova, K., Schultz, T.W. and Hermens, J., J. Theor. Biol., 178 (1996) 7.

    CAS  Article  Google Scholar 

  66. 66.

    Pirselova, K., Balaz, S. and Schultz, T.W., Arch. Environ. Contam. Toxicol., 30 (1996) 170.

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Balaz, S., Cronin, M.T.D. and Dearden, J.C., Pharm. Sci. Commun., 4 (1993) 51.

    CAS  Google Scholar 

  68. 68.

    Pirselova, K., Balaz, S., Sturdik, E., Ujhelyova, R., Veverka, M., Uher, M. and Brtko, J., Quant. Struct.—Act. Relat., 16 (1997) 283.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baláž, Š. Lipophilicity in trans-bilayer transport and subcellular pharmacokinetics. Perspectives in Drug Discovery and Design 19, 157–177 (2000). https://doi.org/10.1023/A:1008775707749

Download citation

  • absorption
  • amphiphilicity
  • bilayer/water interface
  • core
  • disposition
  • distribution
  • elimination
  • phospholipids
  • QSTAR