Estimating binding constants – The hydrophobic effect and cooperativity

Abstract

The reliable estimation of binding constants by computational means for drugs binding to receptors represents one of the major challenges in molecular recognition. Many approaches to this problem have relied on the partitioning of binding free energy according to each of the interactions which are made or broken on binding, e.g., hydrogen bonds, salt bridges, π-π interactions, or the hydrophobic effect. With particular reference to the hydrophobic effect, we illustrate how such partitioning ignores one of the fundamental properties of systems of non-covalent interactions, namely that of cooperativity. This leads to estimates for the free energy benefit of the hydrophobic effect which vary according to the method of determination used, and whether the system in which the measurements are taken exhibits cooperativity. The context dependence of the magnitude of the hydrophobic effect illustrates the problem associated with considering weak interactions in isolation from the system in which they occur. The approach of partitioning binding affinities can be very useful, but until the problem of cooperativity can be better addressed by computational chemists, there remains the possibility that attempts to estimate at least some binding constants will unfortunately be seriously flawed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Andrews, P.R., Craik, D.J. and Martin, J.L., J. Med. Chem., 27 (1984) 1648.

    PubMed  Google Scholar 

  2. 2.

    Williams, D.H. and Westwell, M.S., Chem. Soc. Rev., 27 (1998) 57.

    Google Scholar 

  3. 3.

    Dill, K.A., Biochemistry, 29 (1990) 7133.

    PubMed  Google Scholar 

  4. 4.

    Tanford, C., The Hydrophobic Effect: Formation ofMicelles and Biological Membranes, Wiley, New York, NY, 1980.

    Google Scholar 

  5. 5.

    Frank, H.S. and Evans, M.W., J. Chem. Phys., 13 (1945) 507.

    Google Scholar 

  6. 6.

    Nemethy, G. and Scheraga, H.A., J. Chem. Phys., 36 (1962) 3401.

    Google Scholar 

  7. 7.

    Gill, S.J., Dec, S.F., Olofsson, G. and Wadsö, I., J. Phys. Chem., 89 (1985) 3758.

    Google Scholar 

  8. 8.

    Muller, N., Acc. Chem. Res., 23 (1990) 23.

    Google Scholar 

  9. 9.

    Pertsemlidis, A., Saxena, A.M., Soper, A.K., Head-Gordon, T. and Glaeser, R.M., Proc. Natl. Acad. Sci. USA, 93 (1996) 10769.

    Google Scholar 

  10. 10.

    Silverstein, K.A.T., Haymet, A.D.J. and Dill, K.A., J. Am. Chem. Soc., 120 (1998) 3166.

    Google Scholar 

  11. 11.

    Privalov, P.L. and Gill, S.J., Adv. Protein Chem., 39 (1988) 191.

    PubMed  Google Scholar 

  12. 12.

    Eisenhaber, F., Protein Sci., 5 (1996) 1676.

    Google Scholar 

  13. 13.

    Eisenberg, D. and McLachlan, A.D., Nature, 319 (1986) 199.

    Google Scholar 

  14. 14.

    Ooi, T., Oobatake, M., Nemethy, G. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 84 (1987) 3086.

    Google Scholar 

  15. 15.

    Ben-Naim, A. and Mazo, R., J. Phys. Chem. B, 101 (1997) 11221.

    Google Scholar 

  16. 16.

    Sharp, K.A., Nicholls, A., Fine, R.F. and Honig, B., Science, 252 (1991) 106.

    Google Scholar 

  17. 17.

    Sharp, K.A., Nicholls, A., Friedman, R. and Honig, B., Biochemistry, 30 (1991) 9686.

    Google Scholar 

  18. 18.

    Sanchez-Ruiz, J.M., Eur. Biophys. J., 24 (1996) 261.

    Google Scholar 

  19. 19.

    Baase, W.A., Eriksson, A.E., Zhang, X.J., Heinz, D.W., Sauer, U., Blaber, M., Baldwin, E.P., Wozniak, J.A. and Matthews, B.W., Faraday Discuss., (1992) 173.

  20. 20.

    Makhatadze, G.I. and Privalov, P.L., Adv. Protein Chem., 47 (1995) 307.

    Google Scholar 

  21. 21.

    Chothia, C., Nature, 254 (1975) 304.

    Google Scholar 

  22. 22.

    Reynolds, J.A., Gilbert, D.B. and Tanford, C., Proc. Natl. Acad. Sci. USA, 71 (1974) 2925.

    Google Scholar 

  23. 23.

    Hermann, R.B., J. Phys. Chem., 76 (1972) 2754.

    Google Scholar 

  24. 24.

    Chothia, C., Nature, 248 (1974) 338.

    Google Scholar 

  25. 25.

    Sanchez-Ruiz, J.M., J. Phys. Chem., 99 (1995) 12076.

    Google Scholar 

  26. 26.

    Searle, M.S., Williams, D.H. and Gerhard, U., J. Am. Chem. Soc., 114 (1992) 10697.

    Google Scholar 

  27. 27.

    Nicholls, A., Sharp, K.A. and Honig, B., Proteins Struct. Funct. Genet., 11 (1991) 281.

    Google Scholar 

  28. 28.

    Ross, P.D. and Rekharsky, M.V., Biophys. J., 71 (1996) 2144.

    Google Scholar 

  29. 29.

    Pace, C.N., J. Mol. Biol., 226 (1992) 29.

    Google Scholar 

  30. 30.

    Takano, K., Yamagata, Y. and Yutani, K., J. Mol. Biol., 280 (1998) 749.

    Google Scholar 

  31. 31.

    Serrano, L., Neira, J.-L., Sancho, J. and Fersht, A.R., Nature, 356 (1992) 453.

    Google Scholar 

  32. 32.

    Kellis, J.T., Nyberg, K. and Fersht, A.R., Biochemistry, 28 (1989) 4914.

    Google Scholar 

  33. 33.

    Shortle, D., Stites, W.E. and Meeker, A.K., Biochemistry, 29 (1990) 8033.

    Google Scholar 

  34. 34.

    Matsumura, M., Becktel, W.J. and Matthews, B.W., Nature, 334 (1988) 406.

    Google Scholar 

  35. 35.

    Goto, K., Biochem. Biophys. Res. Commun., 206 (1995) 497.

    Google Scholar 

  36. 36.

    Vallone, B., Miele, A.E., Vecchini, P., Chiancone, E. and Brunori, M., Proc. Natl. Acad. Sci. USA, 95 (1998) 6103.

    Google Scholar 

  37. 37.

    Tsai, C.J., Lin, S.L., Wolfson, H.J. and Nussinov, R., Protein Sci., 6 (1997) 53.

    Google Scholar 

  38. 38.

    Jackson, R.M. and Sternberg, M.J.E., Protein Eng., 7 (1994) 371.

    Google Scholar 

  39. 39.

    Lee, B. and Richards, F.M., J. Mol. Biol., 55 (1971) 379.

    Google Scholar 

  40. 40.

    Eriksson, A.E., Baase, W.A., Zhang, X.-J., Heinz, D.W., Blaker, M., Baldwin, E.P. and Matthews, B.W., Science, 255 (1992) 178.

    Google Scholar 

  41. 41.

    Baldwin, R.L., Proc. Natl. Acad. Sci. USA, 83 (1986) 8069.

    Google Scholar 

  42. 42.

    Tuñon, I., Silla, E. and Pascualahuir, J.L., Protein Eng., 5 (1992) 715.

    Google Scholar 

  43. 43.

    Aveyard, R. and Haydon, D.A.J., Trans. Faraday Soc., 20 (1965) 2255.

    Google Scholar 

  44. 44.

    Williamson, M.P. and Williams, D.H., Eur. J. Biochem., 138 (1984) 345.

    Google Scholar 

  45. 45.

    Sharman, G.J., Searle, M.S., Benhamu, B., Groves, P. and Williams, D.H., Angew. Chem. Int. Ed. Engl., 34 (1995) 1483.

    Google Scholar 

  46. 46.

    Searle, M.S., Sharman, G.J., Groves, P., Benhamu, B., Beauregard, D.A., Westwell, M.S., Dancer, R.J., Maguire, A.J., Try, A.C. and Williams, D.H., J. Chem. Soc., Perkin Trans. 1, (1996) 2781.

    Google Scholar 

  47. 47.

    Searle, M.S., Westwell, M.S. and Williams, D.H., J. Chem. Soc., Perkin Trans. 2, (1995) 141.

    Google Scholar 

  48. 48.

    Kauzmann, W., Adv. Protein Chem., 14 (1959) 1.

    PubMed  Google Scholar 

  49. 49.

    Mark, A.E. and van Gunsteren, W.F., J. Mol. Biol., 240 (1994) 167.

    Google Scholar 

  50. 50.

    Dill, K.A., J. Biol. Chem., 272 (1997) 701.

    Google Scholar 

  51. 51.

    LiCata, V.J. and Ackers, G.K., Biochemistry, 34 (1995) 3133.

    Google Scholar 

  52. 52.

    Lee, B., Protein Sci., 2 (1993) 733.

    Google Scholar 

  53. 53.

    Eriksson, A.E., Baase, W.A. and Matthews, B.W., J. Mol. Biol., 229 (1993) 747.

    Google Scholar 

  54. 54.

    Fersht, A.R. and Dingwall, C., Biochemistry, 18 (1979) 2627.

    Google Scholar 

  55. 55.

    Tsui, W.-C. and Fersht, A.R., Nucleic Acids Res., 9 (1981) 4627.

    Google Scholar 

  56. 56.

    Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.

    Google Scholar 

  57. 57.

    Fersht, A.R., Trends Biochem. Sci., 12 (1987) 301.

    Google Scholar 

  58. 58.

    Shirley, B.A., Stassens, P., Hahn, U. and Pace, C.N., Biochemistry, 31 (1992) 725.

    Google Scholar 

  59. 59.

    Searle, M.S. and Williams, D.H., J. Am. Chem. Soc., 114 (1992) 10690.

    Google Scholar 

  60. 60.

    Westwell, M.S., Klein, J. and Williams, D.H., J. Phys. Chem., 100 (1996) 16000.

    Google Scholar 

  61. 61.

    Williams, D.H., Searle, M.S., Mackay, J., Gerhard, U., Maplestone, R.A., Holroyd, S. and Westwell, M., Proc. R. Soc. Lond., 345 (1993) 11.

    Google Scholar 

  62. 62.

    Weber, P.C., Wendoloski, J.J., Pantoliano, M.W. and Salemme, F.R., J. Am. Chem. Soc., 114 (1992) 3197.

    Google Scholar 

  63. 63.

    Sano, T. and Cantor, C.R., Proc. Natl. Acad. Sci. USA, 92 (1995) 3180.

    Google Scholar 

  64. 64.

    Williams, D.H., Maguire, A.J., Tsuzuki, W. and Westwell, M.S., Science, 280 (1998) 711.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dudley H. Williams.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Williams, D.H., Bardsley, B. Estimating binding constants – The hydrophobic effect and cooperativity. Perspectives in Drug Discovery and Design 17, 43–59 (1999). https://doi.org/10.1023/A:1008770523049

Download citation

  • cooperativity
  • drug design
  • hydrophobic effect
  • non-covalent interactions