Estimating aqueous solvation and lipophilicity of small organic molecules: A comparative overview of atom/group contribution methods

Abstract

Methods for the calculation of two properties of interest in drug design, namely free energy of aqueous solvation and lipophilicity (log P), using fragmental methods are reviewed here. Though aqueous solvation free energies are commonly estimated using `whole molecule' methods such as GB/SA and AMSOL, we have recently shown that fragmental approaches can offer high quality predictions as well (for molecules of the size of 20 atoms or less). In the case of log P predictions, the more commonly used ALOGP and CLOGP approaches represent the two extremes of the fragmental constant approach: ALOGP uses atom-sized fragments and no correction factors; CLOGP uses larger fragments and correction factors, which are typically obtained for each series of molecules separately. Anew approach (HLOGP) that uses both smaller (atom-sized) and larger fragments is shown to offer better performance than the other two widely used methods for the prediction of lipophilicity. In this approach, an automated `inventory' of fragments (bonded atom combinations) within a molecule, known as molecular hologram, is used as a composite descriptor and it is used in conjunction with partial least squares for the prediction of aqueous solvation or lipophilicity. It is emphasized that these different methods are useful in different types of drug design applications involving small organic molecules.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hine, J. and Mookerjee, P.K., J. Org. Chem., 40 (1974) 292.

    Article  Google Scholar 

  2. 2.

    Still, W.C., Tempczyk, A., Hawley, R.C. and Hendrickson, T., J. Am. Chem. Soc., 112 (1990) 6127.

    CAS  Article  Google Scholar 

  3. 3.

    Cramer, C.J. and Truhlar, D.G., Rev. Comput. Chem., 6 (1995) 1.

    CAS  Google Scholar 

  4. 4.

    Fujita, T., Iwasa, J. and Hansch, C., J. Am. Chem. Soc., 86 (1964) 5175.

    CAS  Article  Google Scholar 

  5. 5.

    Leo, A.J., Chem. Rev., 93 (1993) 1281.

    CAS  Article  Google Scholar 

  6. 6.

    Sangster, J., Octanol—Water Partition Coefficients: Fundamentals and Physical Chemistry, Wiley, Chichester, 1997.

    Google Scholar 

  7. 7.

    Bodor, N., Gabanyi, Z. and Wong, C.-K., J. Am. Chem. Soc., 111 (1989) 3783.

    CAS  Article  Google Scholar 

  8. 8.

    Bodor, N. and Huang, M.-J., J. Pharm. Sci., 81 (1992) 272.

    PubMed  CAS  Google Scholar 

  9. 9.

    Viswanadhan, V.N., Rami Reddy, M., Bacquet, R.J. and Erion, M.D., J. Comput. Chem., 14 (1993) 1019.

    CAS  Article  Google Scholar 

  10. 10.

    Jorgensen, W.L. and Tirado-Rives, J., Perspect. Drug Discov. Design, 3 (1995) 123.

    CAS  Article  Google Scholar 

  11. 11.

    Viswanadhan, V.N., Ghose, A.K., Chandra Singh, U. and Wendoloski, J.J., J. Chem. Inf. Comput. Sci., 39 (1999) 405.

    CAS  Article  Google Scholar 

  12. 12.

    Hansch, C. and Leo, A.J., Substituent Constants for Correlation Analysis in Chemistry, Wiley, New York, NY, 1979.

    Google Scholar 

  13. 13.

    Nys, G.G. and Rekker, R.F., Chim. Ther., 8 (1973) 521.

    CAS  Google Scholar 

  14. 14.

    Ghose, A.K., Viswanadhan, V.N. and Wendoloski, J., J. Phys. Chem., 102 (1998) 3762.

    CAS  Google Scholar 

  15. 15.

    Leo, A.J., personal communication, 1999.

  16. 16.

    Ghose, A.K. and Crippen, G.M., J. Comput. Chem., 7 (1986) 565.

    CAS  Article  Google Scholar 

  17. 17.

    Viswanadhan, V.N., Ghose, A.K., Revankar, G.R. and Robins, R.K., J. Chem. Inf. Comput. Sci., 29 (1989) 163.

    CAS  Article  Google Scholar 

  18. 18.

    Wang, R., Fu, Y. and Lai, L., J. Chem. Inf. Comput. Sci., 37 (1997) 615.

    CAS  Article  Google Scholar 

  19. 19.

    Gombar, V.K. and Enslein, K., J. Chem. Inf. Comput. Sci., 36 (1996) 1127.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Broto, P., Moreau, G. and Vandycke, C., Eur. J. Med. Chem., 19 (1984) 71.

    CAS  Google Scholar 

  21. 21.

    Lowis, D.R., HQSAR: A New Highly Predictive QSAR Technique, Tripos Technical Note, Tripos Associates, St. Louis, MO, 1997.

    Google Scholar 

  22. 22.

    Viswanadhan, V.N., Ghose, A.K. and Wendoloski, J.J., J. Chem. Inf. Comput. Sci., submitted.

  23. 23.

    Jorgenson, W.L., Chandrasekhar, J., Madura, J.D., Impey, R. and Klein, M., J. Chem. Phys., 79 (1984) 926.

    Article  Google Scholar 

  24. 24.

    Meng, E.C., Caldwell, J.W. and Kollman, P.A., J. Phys. Chem., 100 (1996) 2367.

    CAS  Article  Google Scholar 

  25. 25.(a)

    Barnard, J.M. and Downs, G.M., Fingerprint Description Package, 3.1 version, Barnard Chemical Information Ltd., Sheffield, 1995.

    Google Scholar 

  26. (b)

    Unity Reference Manual, Tripos Associates, St. Louis, MO, 1997.

  27. 26.

    Jorgenson, W.L. and Tirado-Rives, J., J. Am. Chem. Soc., 110 (1998) 1657.

    Article  Google Scholar 

  28. 27.

    SYBYL, modeling software available from Tripos Associates, St. Louis, MO, 1998.

  29. 28.

    Cerius2, modeling software available from MSI, San Diego, CA, 1999.

  30. 29.

    Furet, P., Sele, A. and Cohen, N.C., J. Mol. Graph., 6 (1988) 182.

    CAS  Article  Google Scholar 

  31. 30.

    Viswanadhan, V.N., Rami Reddy, M., Wlodawer, A., Varney, M.D. and Weinstein, J.N., J. Med. Chem., 39 (1996) 705.

    PubMed  CAS  Article  Google Scholar 

  32. 31.

    Ghose, A.K. and Crippen, G.M., J. Med. Chem., 28 (1985) 333.

    PubMed  CAS  Article  Google Scholar 

  33. 32.

    Ghose, A.K., Viswanadhan, V.N., Sanghvi, Y.S., Nord, L.D., Willis, R.C., Revankar, G.R. and Robins, R.K., Proc. Natl. Acad. Sci. USA, 86 (1989) 8242.

    PubMed  CAS  Article  Google Scholar 

  34. 33.

    Ghose, A.K. and Crippen, G.M., Mol. Pharmacol., 37 (1990) 725.

    PubMed  CAS  Google Scholar 

  35. 34.

    Viswanadhan, V.N., Ghose, A.K. and Weinstein, J.N., Biochim. Biophys. Acta, 1039 (1991) 356.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vellarkad N. Viswanadhan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Viswanadhan, V.N., Ghose, A.K. & Wendoloski, J.J. Estimating aqueous solvation and lipophilicity of small organic molecules: A comparative overview of atom/group contribution methods. Perspectives in Drug Discovery and Design 19, 85–98 (2000). https://doi.org/10.1023/A:1008767505932

Download citation

  • ALOGP
  • ALOGS
  • aqueous solvation
  • atomic constant
  • fragmental method
  • HLOGP
  • HLOGS
  • lipophilicity (log P)
  • molecular hologram
  • solvation free energy