Skip to main content
Log in

Opportunities for materials modeling in microelectronics: Programmed rate chemical vapor deposition

  • Published:
Journal of Computer-Aided Materials Design

Abstract

Two case studies are presented in order to highlight the status of materials modeling in semiconductor materials processing, as well as some opportunities in the area. Both case studies involve programmed rate chemical vapor deposition (PRCVD), which is a CVD process in which conditions are systematically changed during deposition in order to enhance either processing properties or resulting film properties. In the tungsten study, quantitative simulations, based on fundamental transport and reaction modeling and a continuum film representation, are used to guide experiments that demonstrate how PRCVD can provide significantly greater throughput than conventional, constant rate CVD (CRCVD). We start the deposition process at a much higher temperature, compared to a CRCVD process, then decrease the temperature during deposition. We achieve throughput increases of about a factor of three, with more improvement clearly obtainable. In addition to the increase in throughput, the properties of the PRCVD films are equal to, or superior to, CRCVD films. The aluminum PRCVD case study demonstrates some opportunities for materials modeling. The protocols used are based upon qualitative models of nucleation and film growth, as there are no simulators that predict microstructure and film properties. Nevertheless, we demonstrate that the PRCVD processes, designed using qualitative models, can yield films with better properties than CRCVD processes. PRCVD films can have higher nuclei densities, higher fractions of (111) orientated Al, lower surface roughnesses, higher reflectivities, and resistivities closer to that of bulk aluminum. In general, PRCVD protocols provide degrees of freedom that can be used to improve processing or film properties. PRCVD may become much more important as films get thinner and interfaces become more important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sivaram, S., Chemical Vapor Deposition, VNR, New York, NY, 1995, pp. 168–169.

    Google Scholar 

  2. Rossnagel, S. and Ulman, A. (Eds.), Thin Films Vol. 22, Modeling of Film Deposition for Microelectronic Applications, Academic Press, New York, NY, 1996.

  3. Kuijlaars, K.J., Kleijn, C.R. and van der Akker, H.E.A., Thin Solid Films, 270 (1995) 456.

    Article  CAS  Google Scholar 

  4. Gobbert, M.K., Merchant, T., Borucki, L.J. and Cale, T.S., J. Electrochem. Soc., 144 (1997) 3945.

    Article  CAS  Google Scholar 

  5. Rogers, S.T. and Jensen, K.F., J. Appl. Phys., 83 (1998) 524.

    Article  Google Scholar 

  6. Cale, T.S., Jain, M.K. and Raupp, G.B., J. Electrochem. Soc., 137 (1990) 1526.

    Article  Google Scholar 

  7. Kristof, J.J., Song, L.J., Crouch, P.E., Tsakalis, K.S. and Cale, T.S., In Allendorf, M. and Bernard, C. (Eds.), Chemical Vapor Deposition, ECS, PV97-25, 1997, p. 1566.

  8. Yang, D., Jonnalagadda, R., Rogers, B.R., Hillman, J.T., Foster, R.F. and Cale, T.S., In Andricacos, P.C., Dukovic, J.O., Mathad, G.S., Oleszek, G.M., Rathore H.S. and Reidsema Simpson, C. (Eds.), Electrochemical Processing in ULSI Fabrication I and Interconnect and Contact Metallization: Materials, Processes, and Reliability (Electrochem. Soc. Proc. 98-6, 1999, pp. 221–231).

  9. Song, L., Optimal Control Problems in Chemical Vapor Deposition, Ph.D. Thesis, Arizona State University, Tempe, AZ, 1997.

    Google Scholar 

  10. Kristof, J.J., Optimal Control Based Programmed Rate Chemical Vapor Deposition of Tungsten, M.S. Thesis, Arizona State University, Tempe, AZ, 1999 – expected.

    Google Scholar 

  11. Cale, T.S. and Raupp, G.B., J. Vac. Sci. Technol. B, 8 (1990) 1242.

    Article  Google Scholar 

  12. Cale, T.S., Gandy, T.H. and Raupp, G.B., J. Appl. Phys., 68 (1990) 3645.

    Article  CAS  Google Scholar 

  13. Cale, T.S. and Raupp, G.B., J. Vac. Sci. Technol. B, 8 (1990) 649.

    Article  Google Scholar 

  14. Cale, T.S., J. Vac. Sci. Technol. B, 9 (1991) 2551.

    Article  Google Scholar 

  15. Cale, T.S., In Srolovitz, D.J., Volkert, C.A., Fluss, M.J. and Kee, R.J. (Eds.), Modeling and Simulation of Thin-Film Processing, MRS Symp. Proc., Vol. 389, MRS, Pittsburgh, PA, 1995, p. 95.

    Google Scholar 

  16. IslamRaja, M.M., Capelli, M.A., McVittie, J.P. and Saraswat, K.C., J. Appl. Phys., 70 (1991) 7137.

    Article  CAS  Google Scholar 

  17. Singh, V.K., Shaqfeh, E.S.G. and McVittie, J.P., J. Vac. Sci. Technol. B, 10 (1992) 1091.

    Article  CAS  Google Scholar 

  18. Hsieh, J.J. and Joshi, R.V., In Rana, V.V.S, Joshi, R.V. and Ohdomari, I. (Eds.), Advanced Metallization for ULSI Applications 1991, Materials Research Society, Pittsburgh, PA, 1992, p. 77.

    Google Scholar 

  19. Dalvie, M., Farouki, R.T. and Hamaguchi, S., IEEE Transactions on Electron Devices, 39 (1992) 1090.

    Article  Google Scholar 

  20. Akiyama, Y., Matsumura, S. and Imaishi, N., Jpn. J. Appl. Phys., 34 (1995) 6171.

    Article  CAS  Google Scholar 

  21. EVOLVE is a deposition, etch and thin film flow process simulator developed under the direction of T.S. Cale; version 5.0i released June 1999.

  22. Cale, T.S., Chaara, M.B. and Hasper, A., In Katz, A., Murarka, S.P., Nissim, Y.I. and Harper, J.M.E. (Eds.), Advanced Metallization and Processing for Semiconductor Devices and Circuits-II, MRS Symp. Ser. Vol. 260, 1992, p. 393.

  23. Cale, T.S., Raupp, G.B., Chaara, M.B. and Shemansky, F.A., Thin Solid Films, 220 (1992) 66.

    Article  CAS  Google Scholar 

  24. Cale, T.S., Gandy, T.H., Jain, M.K., Raupp, G.B., Govil, M. and Hasper, A., In Rana, V.V.S., Joshi, R.V. and Ohdomari, I. (Eds.), Advanced Metallization for ULSI Applications, MRS, Pittsburgh, PA, 1992, p. 101.

    Google Scholar 

  25. Kleijn, C.R., Thin Solid Films, 206 (1991) 47.

    Article  Google Scholar 

  26. Cale, T.S. and Mahadev, V., In Rossnagel, S. and Ulman, A. (Eds.), Thin Films Vol. 22, Modeling of Film Deposition for Microelectronic Applications, Academic Press, New York, NY, 1996, p. 175.

    Google Scholar 

  27. Jain, M.K., Cale, T.S. and Gandy, T.H., J. Electrochem. Soc., 140 (1993) 242.

    Article  CAS  Google Scholar 

  28. Jairath, R., Jain, A., Tolles, R.D., Hampden-Smith, M.J. and Kodas, T.T., In Kodas, T.T. and Hampden-Smith, M.J. (Eds.), The Chemistry of Metal CVD, VCH, Weinheim, New York, NY, 1994, p. 19.

    Google Scholar 

  29. Tracy, K., Programmed Rate Chemical Vapor Deposition: Blanket Tungsten Film Characterization, M.S. Thesis, Arizona State University, Tempe, AZ, 1996.

    Google Scholar 

  30. Masu, K. and Tsubouchi, K., In Blumenthal, R. and Janssen, G. (Eds.), Advanced Metallization for ULSI Applications in 1994, MRS, Pittsburgh, PA, 1995, p. 477.

    Google Scholar 

  31. Vaidya, S. and Sinha, A.K., Thin Solid Films, 75 (1981) 253.

    Article  CAS  Google Scholar 

  32. Kim, Y.W., Petrov, I. and Green, J.E., J. Vac. Sci. Technol. A, 14 (1996) 346.

    Article  CAS  Google Scholar 

  33. Knorr, D.B., Tracy, D.P. and Rodbell, K.P., Appl. Phys. Lett., 59 (1991) 3241.

    Article  CAS  Google Scholar 

  34. Knorr, D.B. and Lu, T.-M., Appl. Phys. Lett., 54 (1989) 2210.

    Article  CAS  Google Scholar 

  35. Lee, K.-I., Kim, Y.-S. and Joo, S.-K., J. Electrochem. Soc., 139 (1992) 3578.

    Article  CAS  Google Scholar 

  36. Higashi, G.S., Raghavachari, K. and Steigerwald, M.L., J. Vac. Sci. Technol. B, 8 (1990) 103.

    Article  CAS  Google Scholar 

  37. Cheung, K.P., Case, C.J., Liu, R., Schutz, R.J., Wagner, R.S., Kwakman, L.F.T., Huibregtse, D., Piekaar, H.W. and Granneman, E.H.A. In Proc. 7th Int. IEEE VLSI Multilevel Interconnection Conf., IEEE, New York, NY, 1990, p. 303.

    Google Scholar 

  38. Egger, K.W., J. Am. Chem. Soc., 91 (1969) 1869.

    Article  Google Scholar 

  39. Mahadev, V., Challa, A. and Cale, T.S., In Allendorf, M. and Bernard, C. (Eds.), Chemical Vapor Deposition, ECS, PV97-25, 1997, p. 270.

  40. Battaile, C.C., Srolovitz, D.J. and Butler, J.E., J. Appl. Phys., 82 (1997) 6293.

    Article  CAS  Google Scholar 

  41. Breeman, M., Michely, T. and Cosma, G., Surf. Sci., 370 (997) L193.

  42. Ozawa, S., Sasajima, Y. and Heerman, D.W., Thin Solid Films, 272 (1996) 172.

    Article  CAS  Google Scholar 

  43. Breeman, M., Barkema, G.T., Langelaar, M.H. and Boerma, D.O., Thin Solid Films, 272 (1996) 195.

    Article  CAS  Google Scholar 

  44. Huang, H., Gilmer, G.H. and Diaz de la Rubia, T., J. Appl. Phys., 84 (1998) 3636.

    Article  CAS  Google Scholar 

  45. Gilmer, G.H., Huang, H., Diaz de la Rubia, T., and Roland, C., Comput. Mater. Sci., 12 (1998) 354.

    Article  CAS  Google Scholar 

  46. Huang, H. and Gilmer, G.H., J. Comput.-Aided Mater. Design, 6 (1999) 117 (this issue).

    Article  CAS  Google Scholar 

  47. Gilmer, G.H., Huang, H., Diaz de la Rubia, T., Torre, J.D. and Baumann, F., Thin Solid Films, accepted.

  48. Voter, A.F., Phys. Rev. Lett., 78 (1997) 3908.

    Article  CAS  Google Scholar 

  49. Wang, Z., Li, Y. and Adams, J.B., Surf. Sci., accepted.

  50. Srolovitz, D.J., Dandy, D.S., Butler, J.E., Battaile, C.C. and Paritosh, JOM, 49 (1997) 42.

    CAS  Google Scholar 

  51. Paritosh, Srolovitz, D.J., Battaile, C.C., Li, X. and Butler, J.E., Acta Mater., 47 (1999) 2269.

    Article  CAS  Google Scholar 

  52. Smy, T., Joshi, R.V., Tait, N., Dew, S.K. and Brett, M.J., IEDM Technical Digest 1998, (1998) 311.

    Google Scholar 

  53. Basa, C., Hu, Y.Z., Tinani, M. and Irene, E.A., J. Vac. Sci. Technol. A, 16 (1998) 3223.

    Article  CAS  Google Scholar 

  54. Hwang, E.S. and Lee, J., J. Vac. Sci. Technol. B, 16 (1998) 3015.

    Article  CAS  Google Scholar 

  55. Yang, D., Jonnalagadda, R., Mahadev, V., Cale, T.S., Hillman, J.T. and Foster, R.F., In Im, J., Yalisove, S., Adams, B., Zhu, Y. and Chen, F.-R. (Eds.), Polycrystalline Thin Films–Structure, Texture, Properties and Applications III, MRS Proc. 472, Pittsburgh, PA, 1997, pp. 337–342.

  56. Jonnalagadda, R., Yang, D., Rogers, B.R., Hillman, J.T., Foster, R.F. and Cale, T.S., J. Mater. Res., 14 (1999) 1982.

    CAS  Google Scholar 

  57. Image Analysis Software version 1.60, free application software available on the website of the Division of Computer Research and Technology, National Institutes of Health (at http: //www.nih.gov).

  58. Kim, J.-Y., Reucroft, P.J. and Park, D.-K., Thin Solid Films, 289 (1996) 184.

    Article  CAS  Google Scholar 

  59. Hwang, E.S. and Lee, J., J. Vac. Sci. Technol. B, 16 (1998) 3015.

    Article  CAS  Google Scholar 

  60. Cercignani, C., The Boltzmann Equation and its Applications, Springer Verlag, New York, NY, 1988.

    Google Scholar 

  61. Patterson, G.N., Introduction to the Kinetic Theory of Gas Flows, University of Toronto Press, Toronto, ON, 1971.

    Google Scholar 

  62. Lin, Z., Flux Distributions and Deposition Profiles from Hexagonal Collimators During Sputter Deposition, M.S. Thesis, Arizona State University, Tempe, AZ, 1995.

    Google Scholar 

  63. Toprac, A.J., Jones, B.P., Schlueter, J. and Cale, T.S., In Demczyk, B.G., Garfunkel, E., Clemens, B.M., Williams, E.D. and Cuomo, J.J. (Eds.), Evolution of Thin Film and Surface Structure and Morphology, MRS Symp. Proc., Vol. 355, MRS, Pittsburgh, PA, 1995, p. 575.

    Google Scholar 

  64. Rogers, B.R. and Cale, T.S., Thin Solid Films, 236 (1993) 334.

    Article  CAS  Google Scholar 

  65. Fang, C.C., Prasad, V. and Jones, F., J. Vac. Sci. Technol. A, 11 (1993) 2778.

    Article  CAS  Google Scholar 

  66. Labun, A.H., Moffat, H. and Cale, T.S., J. Vac. Sci. Technol. B, submitted.

  67. Sewell, G., The Numerical Solution of Ordinary and Partial Differential Equations, Academic Press, New York, NY, 1988.

    Google Scholar 

  68. Users' Guide for EVOLVE, a low pressure deposition and etch process simulator written by T.S. Cale, with funding from the Semiconductor Research Corporation, the National Science Foundation and Motorola.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cale, T.S., Richards, D.F. & Yang, D. Opportunities for materials modeling in microelectronics: Programmed rate chemical vapor deposition. Journal of Computer-Aided Materials Design 6, 283–309 (1999). https://doi.org/10.1023/A:1008762530690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008762530690

Navigation