Skip to main content
Log in

Damage production, accumulation and materials performance in radiation environment

  • Published:
Journal of Computer-Aided Materials Design

Abstract

Collisions of energetic projectile particles with host atoms produce atomic displacements in the target materials. Subsequently, some of these displacements are transformed into lattice defects and survive in the form of single defects and defect clusters. Depending on the ambient temperature, these defects and their clusters diffuse, interact, annihilate, segregate and accumulate in various forms and are responsible for the evolution of the irradiation-induced microstructure. Naturally, both physical and mechanical properties and thereby the performance and lifetime of target materials are likely to be determined by the nature and the magnitude of the accumulated defects and their spatial dispositions. A multitude of processes covering a variety of temporal and spatial scales contribute to the evolution of the global microstructure. Results of computer simulations as well as theoretical modelling describing some of these processes will be reviewed and discussed. The framework within which the influence of irradiation on void swelling, radiation hardening and loss of ductility can be treated will be discussed. It will be emphasized that the nature of displacement damage production plays an important role in the evolution of the global microstructure. Finally, a brief summary of the current status in the fields of computer simulations and theoretical modelling is presented in the form of concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pabst, A., Am. Mineral., 37 (1952) 137.

    CAS  Google Scholar 

  2. Ewing, R.C., Chakoumakos, B.C., Lumpkin, G.R. and Murakami, T., MRS Bull., 12 (1987) 58.

    CAS  Google Scholar 

  3. Hamberg, A., Geol. Fönem Stockholm Föhr, 36 (1914) 31.

    Google Scholar 

  4. Wigner, E.P., J. Appl. Phys., 17 (1946) 857.

    Article  Google Scholar 

  5. Seitz, F., Physics Today, 5 (1952) 6.

    Article  Google Scholar 

  6. Robinson, M.T., J. Nucl. Mater., 216 (1994) 1.

    Article  CAS  Google Scholar 

  7. Ghoniem, N.M., J. Nucl. Mater., 258-263 (1998) 113.

    Article  CAS  Google Scholar 

  8. Bohr, N., Phil. Mag., 25 (1913) 10.

    CAS  Google Scholar 

  9. Bohr, N., Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. No. 8, 18 (1948) 1.

    Google Scholar 

  10. Bohr, N. and Lindhard, J., Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. No. 7, 28 (1954) 1.

    Google Scholar 

  11. Lindhard, J., Scharff, M. and Schiøtt, H.E., Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. No. 14, 33 (1963) 1.

    Google Scholar 

  12. Lindhard, J., Nielsen, V., Scharff, M. and Thomsen, P.V., Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd., No. 10, 33 (1963) 1.

    Google Scholar 

  13. Lindhard, J., Nielsen, V. and Scharff, M., Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd., No. 10, 36 (1968) 1.

    Google Scholar 

  14. Kinchin, G.H. and Pease, R.S., Rep. Progr. Phys., 18 (1955) 1.

    Article  Google Scholar 

  15. Norgett, M.J., Robinson, M.T. and Torrens, I.M., Nucl. Eng. Des., 33 (1975) 50.

    Article  Google Scholar 

  16. Brinkman, J.A., J. Appl. Phys., 25 (1954) 961.

    Article  CAS  Google Scholar 

  17. Seeger, A., In Proceedings of the Second United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, Vol. 6, New York, NY, 1958, p. 250.

    CAS  Google Scholar 

  18. Gibson, J.B., Goland, A.N., Milgram, M. and Vineyard, G.H., Phys. Rev., 120 (1960) 1229.

    Article  CAS  Google Scholar 

  19. Beeler Jr., J.R., Phys. Rev., 150 (1966) 470.

    Article  CAS  Google Scholar 

  20. Stoller, R.E., Odette, G.R. and Wirth, B.D., J. Nucl. Mater., 251 (1997) 49.

    Article  CAS  Google Scholar 

  21. Diaz de la Rubia, T., Soneda, N., Caturla, M.M. and Alonso, E.A., J. Nucl. Mater., 251 (1997) 13.

    Article  CAS  Google Scholar 

  22. Diaz de la Rubia, T., Ann. Rev. Mater. Sci., 26 (1996) 217.

    Google Scholar 

  23. Bacon, D.J., Calder, A.F. and Gao, F., J. Nucl. Mater., 251 (1997) 1.

    Article  CAS  Google Scholar 

  24. Robinson, M.T. and Torrens, I.M., Phys. Rev., B9 (1974) 5008.

    Google Scholar 

  25. Heinisch, H.L., Rad. Eff. Def. Solids, 113 (1983) 46.

    Google Scholar 

  26. Heinisch, H.L. and Singh, B.N., Phil. Mag., A67 (1993) 407.

    Google Scholar 

  27. Kiritani, M., Yoshie, T., Kojima, S. and Satoh, Y., Rad. Eff. Def. Solids, 113 (1990) 75.

    CAS  Google Scholar 

  28. Bacon, D.J., Osetsky, Yu.N. and Gao, F., J. Comput.-Aided Mater. Design, 6 (1999) 225 (this issue).

    Article  CAS  Google Scholar 

  29. Foreman, A.J.E., English, C.A. and Phythian, W.J., Phil. Mag., A66 (1992) 655 and 671.

    Google Scholar 

  30. Phythian,W.J., Stoller, R.E., Foreman, A.J.E., Calder, A.F. and Bacon, D.J., J. Nucl. Mater., 223 (1995) 245.

    Article  CAS  Google Scholar 

  31. Osetsky, Yu.N., Serra, A., Priego, V., Singh, B.N. and Golubov, S.I., Phil. Mag., A (1999), in press.

  32. Osetsky, Yu.N., Bacon, D.J., Serra, A., Singh, B.N. and Golubov, S.I., J. Nucl. Mater., 276 (2000) 65.

    Article  CAS  Google Scholar 

  33. Soneda, N. and Diaz de la Rubia, T., Phil. Mag., A78 (1998) 995.

    Google Scholar 

  34. Gao, F., Bacon, D.J. and Osetsky, Yu.N., J. Nucl. Mater., 276 (2000) 213.

    Article  CAS  Google Scholar 

  35. Osetsky, Yu.N., Priego, V. and Serra, A., J. Nucl. Mater., 276 (2000) 202.

    Article  CAS  Google Scholar 

  36. Osetsky, Yu.N., Serra, A., Singh, B.N. and Golubov, S.I., Phil. Mag., A (1999), in press.

  37. Brailford, A.D. and Bullough, R., J. Nucl. Mater., 44 (1972) 121.

    Article  Google Scholar 

  38. Wiedersich, H., Radiat. Eff., 12 (1972) 111.

    CAS  Google Scholar 

  39. Bullough, R., Eyre, B.L. and Krishan, K., Proc. R. Soc., A 346 (1975) 81.

    Google Scholar 

  40. Stoller, R.E. and Odette, G.E., In Garner, F.A., Packan, N.H. and Kumar, A.S. (Eds.) ASTMSTP 955, 1987, p. 371.

  41. Woo, C.H., Singh, B.N. and Semenov, A., J. Nucl. Mater., 239 (1996) 7.

    Article  CAS  Google Scholar 

  42. Singh, B.N., Golubov, S.I., Trinkaus, H., Serra, A., Osetsky, Yu.N. and Barashev, A.V., J. Nucl. Mater., 251 (1997) 107.

    Article  CAS  Google Scholar 

  43. Singh, B.N., J. Nucl. Mater., 258-263 (1998) 18.

    Article  CAS  Google Scholar 

  44. Woo, C.H. and Singh, B.N., Phys. Stat. Sol., B159 (1990) 609.

    Google Scholar 

  45. Woo, C.H. and Singh, B.N., Phil. Mag., A65 (1992) 889.

    Google Scholar 

  46. Singh, B.N. and Foreman, A.J.E., Phil. Mag., A66 (1992) 975.

    Google Scholar 

  47. Trinkaus, H., Singh, B.N. and Foreman, A.J.E., J. Nucl. Mater., 199 (1992) 1.

    Article  CAS  Google Scholar 

  48. Trinkaus, H., Singh, B.N. and Foreman, A.J.E., J. Nucl. Mater., 206 (1993) 200.

    Article  CAS  Google Scholar 

  49. Trinkaus, H., Singh, B.N. and Woo, C.H., J. Nucl. Mater., 212-215 (1994) 18.

    Article  CAS  Google Scholar 

  50. Singh, B.N. and Evans, J.H., J. Nucl. Mater., 226 (1995) 277.

    Article  CAS  Google Scholar 

  51. Golubov, S.I., Singh, B.N. and Trinkaus, H., J. Nucl. Mater., 276 (2000) 78.

    Article  CAS  Google Scholar 

  52. Gösele, U. and Seeger, A., Phil. Mag., 34 (1976) 177.

    Google Scholar 

  53. Gösele, U., Progr. Reaction Kinet., 13 (1984) 63.

    Google Scholar 

  54. Heinisch, H.L., Singh, B.N. and Golubov, S.I., J. Nucl. Mater., 276 (2000) 59.

    Article  CAS  Google Scholar 

  55. Heinisch, H.L., Singh, B.N. and Golubov, S.I., J. Comput.-Aided Mater. Design, 6 (1999) 277 (this issue).

    Article  CAS  Google Scholar 

  56. Singh, B.N., Eldrup, M., Horsewell, A., Ehrhart, P. and Dworchak, F., submitted to Phil. Mag.

  57. Singh, B.N., Golubov, S.I. and Trinkaus, H., submitted to Phil. Mag.

  58. Singh, B.N. and Zinkle, S.J., J. Nucl. Mater., 206 (1993) 212.

    Article  CAS  Google Scholar 

  59. Foreman, A.J.E., Singh, B.N. and Horsewell, A., Mater. Sci. Forum, 15-18 (1987) 895.

    CAS  Google Scholar 

  60. Trinkaus, H., Singh, B.N. and Victoria, M., J. Nucl. Mater., 233-237 (1996) 1089.

    Article  CAS  Google Scholar 

  61. a. Singh, B.N., Nature, Phys. Sci., 224 (1973) 142. b. Singh, B.N., Phil. Mag., 29 (1974) 25.

    Google Scholar 

  62. Singh, B.N. and Foreman, A.J.E., Phil. Mag., 29 (1974) 847.

    CAS  Google Scholar 

  63. Horsewell, A. and Singh, B.N., In Garner, F.A., Packan, N.H. and Kumar, A. (Eds.), ASTM-STP 955, 1987, p. 220.

  64. Singh, B.N., Zinkle, S.J., Eldrup, M. and Golubov, S.I., submitted to Phil. Mag.

  65. Wiedersich, H., Mater. Sci. Forum, 97-99 (1992) 59.

    Article  CAS  Google Scholar 

  66. Singh, B.N., Edwards, D.J. and Toft, P., J. Nucl. Mater., 238 (1996) 244.

    Article  CAS  Google Scholar 

  67. Saada, G. and Washburn, J., Phys. Soc. Jpn., 18 (1963) 43.

    Google Scholar 

  68. Orowan, E., Nature, 149 (1942) 643.

    Google Scholar 

  69. Singh, B.N., Foreman, A.J.E. and Trinkaus, H., J. Nucl. Mater., 249 (1997) 103.

    Article  CAS  Google Scholar 

  70. Seeger, A., In Proceedings of Second UN International Conference on Peaceful Uses of Atomic Energy, Geneva, Vol. 6, September 1958, p. 250.

  71. Trinkaus, H., Singh, B.N. and Foreman, A.J.E., J. Nucl. Mater., 249 (1997) 91.

    Article  CAS  Google Scholar 

  72. Trinkaus, H., Singh, B.N. and Foreman, A.J.E., J. Nucl. Mater., 251 (1997) 172.

    Article  CAS  Google Scholar 

  73. Ghoniem, N.M., Singh, B.N., Sun, L.Z. and Diaz de la Rubia, T., J. Nucl. Mater., 276 (2000) 166.

    Article  CAS  Google Scholar 

  74. Ardley, G.W. and Cottrell, A.H., Proc. R. Soc. London, A219 (1953) 328.

    CAS  Google Scholar 

  75. Ghoniem, N.M. and Singh, B.N., In Bilde-Sørensen, J.B. et al. (Eds.) Proceedings of the 20th Risø International Symposium on Materials Science on 'Deformation-Induced Microstructure: Analysis and Relation to Properties', Risø National Laboratory, Roskilde, Denmark, 1999, p. 41.

    Google Scholar 

  76. Dai., Y., Ph.D. Thesis No. 1388, Ecole Polytechnique Fédéral de Lausanne, 1995.

  77. Singh, B.N., Evans, J.H., Horsewell, A., Toft, P. and Müller, G.V., J. Nucl. Mater., 258-263 (1998) 865.

    Article  CAS  Google Scholar 

  78. Singh, B.N., Horsewell, A. and Toft, P., J. Nucl. Mater., 271-272 (1999) 97.

    Article  Google Scholar 

  79. Chen, Y., Späting, P. and Victoria, M., J. Nucl. Mater., 271-272 (1999) 128.

    Article  Google Scholar 

  80. Singh, B.N., Warren, M.R. and Parson, P.D., In John, C.T., Wyles, B. and Moore, B. (Eds.) Nuclear Fuel Performance, Proceedings of the International Conference, London, 15-19 October 1973, British Nuclear Energy Society, 1973, p. 64.1.

  81. Edwards, D.J., Singh, B.N., Toft, P. and Eldrup, M., J. Nucl. Mater., 258-263 (1998) 978.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B.N. Damage production, accumulation and materials performance in radiation environment. Journal of Computer-Aided Materials Design 6, 195–214 (1999). https://doi.org/10.1023/A:1008762229069

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008762229069

Navigation