Skip to main content
Log in

Hydrolysis and Polymerization of Dimethyldiethoxysilane, Methyltrimethoxysilane and Tetramethoxysilane in Presence of Aluminum Acetylacetonate. A Complex Catalyst for the Formation of Siloxanes

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydrolysis and polymerization of dimethyldiethoxysilane (DMDE), methyltrimethoxysilane (MTMS) and tetramethoxysilane (TMOS) in the presence of aluminum acetylacetonate (Al(acac)3) have been investigated by infrared and NMR spectroscopy. In the absence of acidic catalyst, Al(acac)3 catalyzes the hydrolysis of all the silanes. The catalytic activity of Al(acac)3 is less than that of HNO3, but larger than that of NH3. The hydrolysis rate increases with increasing concentration of Al(acac)3 in DMDE. The hydrolysis of TMOS occurs rapidly after an inductive period, which becomes longer with addition of Al(acac)3. The results are explained by assuming an Al(acac)3 catalyzed hydrolysis and a silanol catalyzed hydrolysis. The addition of Al(acac)3 causes changes in polymerization of the resultant silanols. In DMDE and MTMS, it stabilizes the silanols at the early stage, and then enhances their polymerization. The polymerization in TMOS leads to the formation of precipitates that have a high degree of polymerization. The polymerization appears to proceed via a deprotonation mechanism including transfer of protons from silanols to Al(acac)3. The present results strongly suggest that, besides acids and bases, metal complexes can be used as catalysts for the formation of siloxanes under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronic,and Specialty Shapes, edited by L.C. Klein (Noyes, Park Ridge, NJ, 1988). C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990). S. Sakka, in Treatise on Materials Science and Technology, edited by M. Tomozawa and R.H. Doremus (Academic Press, New York, 1982).

    Google Scholar 

  2. E.J.A. Pope and J.D. Mackenzie, J. Non-Cryst. Solids 87, 185(1986).

    Google Scholar 

  3. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979).

    Google Scholar 

  4. M. Yamane, S. Inoue, and A. Yasumori, J. Non-Cryst. Solids 63, 13 (1984). S. Sakka, H. Kozuka, and S. Kim, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988), p. 159.

    Google Scholar 

  5. D.W. Schaefer and K.D. Keefer, in Better Ceramics Through Chemistry, editedby C.J. Brinker, D.E. Clark, and D.R. Ulrich (Elsevier, New York, 1984), p. 1.

    Google Scholar 

  6. S. Sakka, in Better Ceramics Through Chemistry, C.J. Brinker, D.E.Clark, and D.R. Ulrich (Elsevier, New York, 1984), p. 91.

    Google Scholar 

  7. J. Sol-GelSci. Technol. 7 (1996) (Special Issue: Biochemical Aspects).

  8. B.C. Dave, J.M. Miller, B. Dunn, J.S. Valentine, and J.I. Zink, J. Sol-Gel Sci.Technol. 8, 629 (1997).

    Google Scholar 

  9. K.J. McNeil, J.A. DiCaprio, D.A. Walsh, and R.F. Pratt, J. Am. Chem. Soc. 102, 1859 (1980).

    Google Scholar 

  10. A.A. Humffrayand J.J. Ryan, J. Chem. Soc. B 1138 (1969).

  11. E.R. Pohl and F.D. Osterholtz, in Molecular Characterization of Composite Interfaces, edited by H. Ishida and G. Kumar (Plenum, New York, 1985), p. 157.

    Google Scholar 

  12. Z. Zhang, Y. Tanigami, and R. Terai, J. Non-Cyst. Solids 191, 304(1995). Z. Zhang, Langmuir 13, 473 (1997).

    Google Scholar 

  13. U. Jäqlid and O. Lindqvist, Acta Chem. Scand. 44, 765 (1990). Acta Chem. Scand. 45, 887 (1991).

    Google Scholar 

  14. S.C. Deshmukh and E.S. Aydil, J. Vac. Sci. Technol. A 13,2355 (1995).

    Google Scholar 

  15. R.M. Silverstein, G.C. Bassler, and T.C. Morrill,Spectrometric Identification of Organic Compounds (Wiley, New York, 1981).

    Google Scholar 

  16. N. Wright and M.J. Hunter, J. Am. Chem. Soc. 69, 803 (1947). J.F.Brown, Jr., J. Am. Chem. Soc. 87, 4317 (1965). R. Konopka and B. Stojczyk, Acta Phys. Polon. A40, 537 (1971).

    Google Scholar 

  17. C.J. Brinker and D.M. Haaland, J. Am. Ceram. Soc.66, 758 (1983). A. Duran, J.M. Fernandez-Navarro, P. Casariego, and A. Joglar, J. Non-Cryst. Solids 85, 69 (1986).

    Google Scholar 

  18. L.W. Kelts, N.J. Effinger, and S.M. Melpolder,J. Non-Cryst. Solids 83, 353 (1986).

    Google Scholar 

  19. A.R. Siedle, inComprehensive Coordination Chemistry, edited by S.G. Wilkinson (Pergamon, Oxford, 1987), Vol. 2, chapt. 15.4.

    Google Scholar 

  20. M. Sedlar and M. Sayer, J. Sol-Gel Sci. Technol. 5, 27 (1995).

    Google Scholar 

  21. L.L. Funck and T.R. Ortolano, Inorg. Chem. 6, 567 (1967).W.R. May and M.M. Jones, J. Inorg. Nucl. Chem. 25, 507 (1963).

    Google Scholar 

  22. Nuclear Magnetic Shift Reagents, edited byR.E. Sievers (Academic Press, New York, 1973).

    Google Scholar 

  23. T.S. Davis and J.P. Fackler, Jr., Inorg. Chem. 5, 242 (1966). G.S. Vigee and C.L. Watkins, Inorg. Chem. 16, 709 (1977).

    Google Scholar 

  24. M.J. Van Bommel, T.N.M. Bernards, and A.H. Boonstra, J. Non-Cryst. Solids 128, 231 (1991).

    Google Scholar 

  25. C.J. Brinker,J. Non-Cryst. Solids 100, 30 (1988).

    Google Scholar 

  26. F.D. Osterholtz and E.R. Pohl,in Silane and Other Coupling Agents, edited by K.L. Mittal (VSP, The Netherlands, 1992).

    Google Scholar 

  27. J. Chojnowski, S. Rubinsztajn, and L. Wilczek,Macromolecules 20, 2345 (1987).

    Google Scholar 

  28. H. Imura, A. Oshiro, and R. Shiga, Solvent Extr. Ion Exch. 13, 1009 (1995). C. Corvaja and G. Ciacometti, J. Mol. Struct. 2, 239 (1968).

    Google Scholar 

  29. J.F. Brown, Jr., J. Am. Chem. Soc.87, 4217 (1965).

    Google Scholar 

  30. A.J. Barry, W.H. Daudt, J.J. Domicone, and J.W. Gilkey, J. Am. Chem. Soc. 77, 4248 (1955). L.H. Vogt, Jr. and J.F. Brown, Jr., Inorg. Chem. 2, 189 (1963).

    Google Scholar 

  31. Z. Zhang, Y. Tanigami, R. Terai, H. Wakabayashi, and S. Sakka, J. Phys. Chem. B 101, 1328 (1997).

    Google Scholar 

  32. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979), p. 174.

    Google Scholar 

  33. W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Sakka, S. Hydrolysis and Polymerization of Dimethyldiethoxysilane, Methyltrimethoxysilane and Tetramethoxysilane in Presence of Aluminum Acetylacetonate. A Complex Catalyst for the Formation of Siloxanes. Journal of Sol-Gel Science and Technology 16, 209–220 (1999). https://doi.org/10.1023/A:1008761002205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008761002205

Navigation