Skip to main content
Log in

Aggregation Behavior of Alkoxide-Derived Silica in Sol-Gel Process in Presence of Poly(ethylene oxide)

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Growth behavior of silica in an acid catalyzed sol-gel process from silicon alkoxide in the presence of poly(ethylene oxide), PEO, was investigated by in situ small angle X-ray scattering, SAXS, and 29Si NMR measurements. The results of SAXS, that aggregation and gel formation behaviors of silica were affected by the presence of PEO, suggested a strong attractive interaction between silica oligomers and PEO. A possible reaction scheme of silica in the presence of PEO is as follows; (1) PEO and small silica oligomers coexist in the solution without specific interaction just after hydrolysis of the silicon alkoxide. (2) With the progress of condensation, a ramified aggregated complex between PEO and silica oligomers is formed, which is characterized by larger apparent value of radius of gyration and smaller fractal dimension than in the PEO-free system. (3) After gelation, the fractal dimension of scatterers remains to be smaller than that in the PEO-free system, because PEO associated with the silica network inhibits aggregation within the gel networks. Furthermore, PEO inhibits the condensation in the aging and in the drying process, leading to less strongly crosslinked dry gel. A temporal maximum in the time evolution of Rg was observed for the samples separated into two phases with their characteristic domain size being larger than several micrometers. This is considered to be a phenomenon related to increase and divergence of correlation length near and at the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Nature 359, 710 (1992).

    Google Scholar 

  2. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).

    Google Scholar 

  3. S. Inagaki, Y. Fukushima, and K. Kuroda, J. Chem. Soc., Chem. Commun. 1993, 680 (1993).

    Google Scholar 

  4. S. Inagaki, A. Koiwai, N. Suzuki, Y. Fukushima, and K. Kuroda, Bull. Chem. Soc. Jpn. 69, 1449 (1996).

    Google Scholar 

  5. H. Izutsu, F. Mizukami, T. Sashida, K. Maeda, Y. Kiyozumi, and Y. Akiyama, J. Non-Cryst. Solids 212, 40 (1997).

    Google Scholar 

  6. H. Schmidt, J. Sol-Gel Sci. Technol. 1, 217 (1994).

    Google Scholar 

  7. J.D. Mackenzie, J. Sol-Gel Sci. Technol. ,2, 81 (1994).

    Google Scholar 

  8. S. Sakka, Application of Sol-Gel Method (Agune-Shofu-sha, Japan, 1997), in Japanese.

    Google Scholar 

  9. C.J. Brinker and G.W. Scherer, Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing (Academic Press, NY, 1990).

    Google Scholar 

  10. C.J. Brinker, K.D. Keefer, D.W. Schaefer, R.A. Assink, B.D. Kay, and C.S. Ashley, J. Non-Cryst. Solids 63, 45 (1984).

    Google Scholar 

  11. C.J. Brinker and G.W. Scherer, J. Non-Cryst. Solids 75, 301 (1985).

    Google Scholar 

  12. K. Nakanishi and N. Soga, J. Am. Ceram. Soc. 74, 2518 (1991).

    Google Scholar 

  13. K. Nakanishi and N. Soga, J. Non-Cryst. Solids 139, 1 (1992).

    Google Scholar 

  14. K. Nakanishi, H. Komura, R. Takahashi, and N. Soga, Bull. Chem. Soc. Jpn. 67, 1327 (1994).

    Google Scholar 

  15. R. Takahashi, K. Nakanishi, and N. Soga, Faraday Discuss. 101, 249 (1995).

    Google Scholar 

  16. O. Glutter, J. Appl. Cryst. 7, 147 (1974).

    Google Scholar 

  17. J.E. Martin and A.J. Hurd, J. Appl. Cryst. 20, 61 (1987).

    Google Scholar 

  18. T. Vicsek, Fractal Growth Phenomena (World Scientific Publishing Co., Singapore, 1989).

    Google Scholar 

  19. A. Guinier and G. Fournet, Small-Angle Scattering of X-rays (J. Wiley and Sons,Inc., N.Y., 1955).

    Google Scholar 

  20. V.G. Engelhardt, W. Altenburg, D. Hoebbel, and W.Z. Wieker, Anorg. Allg. Chem. 418, 43 (1977).

    Google Scholar 

  21. R.A. Assink and B.D. Kay, J. Non-Cryst. Solids 99, 359 (1988).

    Google Scholar 

  22. C.J. Brinker, J. Non-Cryst. Solids 100, 31 (1988).

    Google Scholar 

  23. J. Rubio and J.A. Kitchener, J. Colloid Interf. Sci. 57, 132 (1976).

    Google Scholar 

  24. K. Nakanishi, R, Takahashi, N. Soga, H. Matsuoka, H. Ishii, and N. Ise, in Proceedings of XVI Conference on Applied Crystallography, edited by H. Morawiec and D. Stroz, 1995, p. 197.

  25. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979).

    Google Scholar 

  26. K. Nakanishi, Y. Yamasaki, H. Kaji, N. Soga, T. Inoue, and N. Nemoto, J. Sol-Gel Sci. Technol. 3, 169 (1994).

    Google Scholar 

  27. K. Nakanishi, N. Soga, H. Matsuoka, and N. Ise, J. Am. Ceram. Soc. 75, 971 (1992).

    Google Scholar 

  28. H. Kaji, K. Nakanishi, and N. Soga, J. Sol-Gel Sci. Technol. 1, 35 (1993).

    Google Scholar 

  29. R. Takahashi, Doctoral thesis, Kyoto University, 1996.

  30. P.G. deGennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).

    Google Scholar 

  31. H.E. Stanly, Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971).

    Google Scholar 

  32. R.A. Ferrell, N. Menyhard, H. Schmidt, F. Schwabl, and P. Szepfalusy, Ann. Phys. 47, 565 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, R., Nakanishi, K. & Soga, N. Aggregation Behavior of Alkoxide-Derived Silica in Sol-Gel Process in Presence of Poly(ethylene oxide). Journal of Sol-Gel Science and Technology 17, 7–18 (2000). https://doi.org/10.1023/A:1008753718586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008753718586

Navigation