Skip to main content
Log in

The Influence of Porosity on the Electromechanical and Pyroelectric Properties of Ca-Modified PbTiO3 Thin Films

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The properties of Pb1-xCaxTiO3 (x = 0–30) thin films for electromechanical and pyroelectric applications can be further improved if porous, low-dielectric constant layers are being used. The electric field dependent strain, piezoelectric coefficient, pyroelectric coefficient and the pyroelectric figure of merit were evaluated as a function of the Ca-content and relative density of the thin films. The heating-rate during the final anneal was observed to be the controlling parameter for the evolution of either dense or porous microstructures. Both 2-methoxyethanol and 1,3-propanediol based solution precursors were used for spin-coating platinized Si3N4/SiO2/Si wafers. Microstructure-property relationships and electrical properties concerning the domain mobility were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ikeda, J. Phys. Soc. Japan 13, 335 (1958).

    Google Scholar 

  2. Y. Yamashita, K. Yokogama, H. Honda, and T. Takahashi, Jap. J. Appl. Phys., Suppl. 20–24, 183 (1981).

    Google Scholar 

  3. R.W. Whatmore, Rep. Prog. Phys. 49, 1335 (1986).

    Google Scholar 

  4. P. Muralt, in Ferroelectric Thin Films, edited by J.S. Speck, R. Waser, and C.M. Foster, in press.

  5. P. Muralt, Revue de l'electricit´e de de l'´electronique 9, 56 (1996).

    Google Scholar 

  6. P. Muralt, T. Maeder, L. Sagalowicz, S. Scalese, D. Naumovic, R.G. Agostino, N. Xanthopolus, H.J. Mathieu, L. Patthey, and E.L. Bullock, J. Appl. Phys. 83, 3835 (1998).

    Google Scholar 

  7. H.D. Chen, K.R. Udayakumar, C.J. Gaskey, and L.E. Cross, Appl. Phys. Lett. 67, 3411 (1995).

    Google Scholar 

  8. J. Mendiola, B. Jimenez, C. Alemany, L. Pardo, and L.D. Olmo, Ferroelectrics 94, 183 (1989).

    Google Scholar 

  9. K.M. Rittenmyer and R.Y. Ting, Ferroelectrics 110, 171 (1990).

    Google Scholar 

  10. W. Wersing, K. Lubitz, and J. Mohaupt, IEEE Trans. Ultrason. Ferroel. Freq. Control 36, 424 (1989).

    Google Scholar 

  11. K. Kushida and H. Takeuchi, Appl. Phys. Lett. 50, 1800 (1987).

    Google Scholar 

  12. A.L. Kholkin, M.L. Calzada, P. Ramos, J. Mendiola, and N. Setter, Appl. Phys. Lett. 69, 3602 (1996).

    Google Scholar 

  13. S.R. Gurkovich and J.B. Blum, in Ultrastructure processing of ceramics, glasses, and composites (Wiley-Interscience, New York, 1984), p. 152.

    Google Scholar 

  14. C.J. Brinker and G.W. Scherer, Sol-gel science. The physics and chemistry of sol-gel processing (Academic Press, San Diego, 1990).

    Google Scholar 

  15. J.B. Blum and S.R. Gurkovich, J. Mater. Sci. 20, 4479 (1985).

    Google Scholar 

  16. T. Tani and D.A. Payne, J. Am. Ceram. Soc. 77, 1242 (1994).

    Google Scholar 

  17. A.P. Wilkinson, J.S. Speck, A.K. Cheetham, S. Natarajan, and J.M. Thomas, Chem. Mater 6, 750 (1994).

    Google Scholar 

  18. A. Seifert, F.F. Lange, and J.S. Speck, J. Mater. Res. 10, 680 (1995).

    Google Scholar 

  19. A. Seifert, L. Sagalowicz, P. Muralt, and N. Setter, J. Mat. Res. 14, 2012 (1999).

    Google Scholar 

  20. J.L. Tu and S.J. Milne, J. Mater. Res. 11, 2556 (1996).

    Google Scholar 

  21. A. Seifert, P. Muralt, and N. Setter, Appl. Phys. Lett. 72, 2409 (1998).

    Google Scholar 

  22. A.L. Kholkin, C. Wuethrich, D.V. Taylor, and N. Setter, Rev. Sci. Instr. 67, 1935 (1996).

    Google Scholar 

  23. H. Hu, C.J. Peng, and S.B. Krupanidhi, Thin Solid Films 223, 327 (1993).

    Google Scholar 

  24. D.J. Wouters, G. Willems, and H.E. Maes, Microelectr. Eng. 29, 249 (1995).

    Google Scholar 

  25. M. Kohli, A. Seifert, and P. Muralt, Int. Ferroelectrics 22, 453 (1998).

    Google Scholar 

  26. N.M. Shorroks, A. Patel, M.J. Walker, and A.D. Parsons, Microelectronic Eng. 29, 59 (1995).

    Google Scholar 

  27. E. Yamaka, H. Watanabe, H. Kimura, H. Kanaya, and H. Ohkuma, J. Vac. Sci. Technol. A 6, 2921 (1988).

    Google Scholar 

  28. W.L. Warren, G.E. Pike, K. Vanheusden, D. Dimos, B.A. Tuttle, and J. Robertson, J. Appl. Phys. 79, 9250 (1996).

    Google Scholar 

  29. D.P. Skinner, R.E. Newnham, and L.E. Cross, Mater. Res. Bull. 13, 599 (1978).

    Article  Google Scholar 

  30. W. Wersing, K. Lubitz, and J. Mohaupt, Ferroelectrics 68, 77 (1986).

    Google Scholar 

  31. K. Lefki and G.J.M. Dormans, J. Appl. Phys. 76, 1764 (1994).

    Google Scholar 

  32. I. Ueda, Jpn. J. Appl. Phys. 11, 450 (1972).

    Google Scholar 

  33. E. Sawaguchi, E.T. Mitsuma, and Z.J. Ishii, J. Phys. Soc. Japan 11, 1298 (1956).

    Google Scholar 

  34. M. Kahn, R.W. Rice, and D. Shadwell, Advan. Ceram. Mater. 1, 55 (1986).

    Google Scholar 

  35. T.R. Gururaja, A. Safari, R.E. Newnham, and L.E. Cross, in Electronic Ceramics: Properties, Devices and Applications, edited by L.M. Levinson (Marcel Dekker, New York, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, A. The Influence of Porosity on the Electromechanical and Pyroelectric Properties of Ca-Modified PbTiO3 Thin Films. Journal of Sol-Gel Science and Technology 16, 13–20 (1999). https://doi.org/10.1023/A:1008752919139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008752919139

Navigation