Skip to main content
Log in

Deviation from Reference Planes and Reference Misorientation for Σ3 Boundaries

  • Published:
Interface Science

Abstract

The purpose of the present work is to study the crystallography of a particular family of interfaces, Σ3 boundaries in copper, in the context of the relationships between Σ3 plane indices, their deviation from reference planes, and the deviation from exact Σ3 matching, v/vm. The relatively high values of v/vm recorded were considered to be the result of texture development during annealing and various ‘back twinning’ and Σ3n impingement interactions. The results show that there is a reasonable correlation between the deviation from a reference misorientation (v/vm) and the deviation from reference interface plane (R). Measurement of v/vm alone provides an indirect estimate of the plane type and hence energy of the boundary, at least for Σ3 boundaries, and moreover is more germane to the experimental mode of data collection. The effect of intragrain orientation variations on the interface parameters was also studied, and it was shown that there is a 20% difference between misorientations calculated near the interface compared with displaced from the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Randle, The Role of the Coincidence Site Lattice in Grain Boundary Engineering (Inst. Materials, London, 1996).

    Google Scholar 

  2. D. Wolf and K.L. Merkle, in Materials Interfaces: Atomic Level Structure and Properties, edited by D. Wolf and S. Yip, (Chapman and Hall, London, 1992), p. 87.

    Google Scholar 

  3. S.C. Mehta and D.A. Smith, in Grain Boundary Engineering, edited by U. Erb and G. Palumbo (Canadian Inst. Min., Met. & Petrol., Montreal, 1994), p. 89.

    Google Scholar 

  4. U. Wolf, F. Ernst, T. Muschik, M.W. Finnis, and H.F. Fischmeister, Phil. Mag. 66A, 991 (1992).

    Google Scholar 

  5. D.P. Pope and F. Chu, Phil. Mag. 69A, 409 (1994).

    Google Scholar 

  6. W.J. Chen, F.R. Chen, and L.J. Chen, Phil. Mag. 68A, 151 (1993).

    Google Scholar 

  7. V. Singh and A.H. King, Scripta Mat. 34, 1723 (1996).

    Google Scholar 

  8. A. Garg, W.A.T. Clark, and J.P. Hirth, Phil. Mag. 59A, 479 (1989).

    Google Scholar 

  9. V. Randle and D.J. Dingley, Scripta Met. 23, 1565 (1989).

    Google Scholar 

  10. V. Randle and D.J. Dingley, in '89: Advanced Materials and Processes, edited by H.E. Exner and V. Schumacher (DGM Oberursel, 1990), p. 1001

  11. V. Randle, Mat. Sci. Tech. 7, 985 (1991).

    Google Scholar 

  12. V. Randle, Acta Cryst. A50, 588 (1994).

    Google Scholar 

  13. V. Randle, J. Mat. Sci. 30, 3983 (1995).

    Google Scholar 

  14. V. Randle, Acta Mater. 46, 1459 (1997).

    Google Scholar 

  15. M. Caul and V. Randle, Mat. Char. 38, 155 (1997).

    Google Scholar 

  16. V. Randle, M Caul, and J. Fiedler, Microscopy and Analysis 3, 224 (1997).

    Google Scholar 

  17. V. Randle, P. Davies, and B. Hulm, Phil. Mag. 794, 305 (1999).

    Google Scholar 

  18. C.T. Thomson and V. Randle, Acta Mater. 45, 4909 (1997).

    Google Scholar 

  19. D.G. Brandon, Acta Met. 14, 1479 (1996).

    Google Scholar 

  20. C.B. Thomson and V. Randle, Textures and Microstructures 28, 71 (1996).

    Google Scholar 

  21. V. Randle and R.K. Davies, Mat. Sci. Tech., in press.

  22. V. Randle, Mat. Char. 34, 29 (1995).

    Google Scholar 

  23. G. Palumbo and K.T. Aust, Acta Met. Mat. 38, 2343 (1990).

    Google Scholar 

  24. G. Palumbo, K.T. Aust, E.M. Lehockey, U. Erb, and P. Lin, Scripta Mat. 38, 1685 (1998).

    Google Scholar 

  25. D. Horton, C.B. Thomson, and V. Randle, Mat. Sci. Eng. A203, 408 (1995).

    Google Scholar 

  26. V. Randle, Acta Met. Mat. 39, 481 (1991).

    Google Scholar 

  27. V. Randle, Metall. Trans. 21A, 2215 (1990).

    Google Scholar 

  28. J. Bystrzycki, K.J. Kurzydlowski, and W. Przetakiewicz, Mat. Sci. Eng. A225, 188 (1997).

    Google Scholar 

  29. W.E. King and A.J. Schwartz, Scripta Mat. 38, 449 (1998).

    Google Scholar 

  30. G. Gottstein, Acta Metall. 32, 1117 (1984).

    Google Scholar 

  31. D. Wolf, in Materials Interfaces: Atomic Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman and Hall, London, 1992), p. 1.

    Google Scholar 

  32. D. Wolf and J.F. Lutsko, Zeit. F. Kristall. 189, 239 (1989).

    Google Scholar 

  33. V. Randle, Acta Met. Mat. 42, 1769 (1994).

    Google Scholar 

  34. J.N. Calvert, P.M. Hazzledine, and D.A. Smith, Scripta Met. 11, 513 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randle, V., Davies, P. Deviation from Reference Planes and Reference Misorientation for Σ3 Boundaries. Interface Science 7, 5–13 (1999). https://doi.org/10.1023/A:1008734331685

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008734331685

Navigation