The applicability of computational chemistry in the evaluation and prediction of drug transport properties


We have investigated the relationship between drug retention in immobilized liposome partitioning chromatography and liposome partitioning and found a strong linear correlation. Separate linear relationships were found depending on the charge of the compound when liposome chromatographic measurements were related to the octanol/water partition coefficients. We have also investigated the importance of the water/octanol partition coefficient in quantitative structure–property relationships related to drug transport properties. The studies show that the inclusion of a parameter related to lipophilicity causes only, at best, a marginal increase in internal predictivity and, at worst, a decrease in external predictivity. The studies also show that parameters related to hydrogen bonding, polarizability and size are important properties that need to be included in quantitative models for drug transport processes. We believe that the use of multivariate characterizations of compounds based on non-composite parameters may result in better and more predictive models compared with models based on parameters of a more composite nature when investigating the possibilities to establish quantitative structure–property relationships.

This is a preview of subscription content, access via your institution.


  1. 1.

    Mouritsen, O.G. and Jorgensen, K., Pharm. Res., 15 (1998) 1507.

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Seydel, J.K., Albores Velasco, M., Coats, E.A., Cordes, H.P., Kunz, B. and Wiese, W., Quant. Struct.-Act. Relat., 11 (1992) 205.

    CAS  Google Scholar 

  3. 3.

    Herbette, L.G., Rhodes, D.G. and Preston Mason, R., Drug Des. Deliv., 7 (1991) 75.

    PubMed  CAS  Google Scholar 

  4. 4.

    Hansch, C., Maloney, P.P., Fujita, T. and Muir, R.M., Nature, 194 (1962) 178.

    CAS  Article  Google Scholar 

  5. 5.

    Tute, M.S., In Pliska, V., Testa, B. and van de Waterbeemd, H. (Eds.) Lipophilicity in Drug Action and Toxicology, Vol. 4, VCH, Weinheim, 1996, pp. 7–26.

    Google Scholar 

  6. 6.

    Lundahl, P. and Beigi, F., Adv. Drug Deliv. Rev., 23 (1997) 221.

    CAS  Article  Google Scholar 

  7. 7.

    Beigi, F., Yang, Q. and Lundahl, P., J. Chromatogr. A, 704 (1995) 315.

    CAS  Article  Google Scholar 

  8. 8.

    Pidgeon, C., Ong, S., Liu, H., Qiu, X., Pidgeon, M., Dantzig, A.H., Munroe, J., Hornback, W.J., Kasher, J.S., Glunz, L. and Szczerba, T., J. Med. Chem., 38 (1995) 590.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Beigi, F., Gootschalk, I., Lagerquist Hägglund, C., Haneskog, L., Brekkan, E., Zhang, Y., Österberg, T. and Lundahl, P., Int. J. Pharm., 164 (1998) 129.

    CAS  Article  Google Scholar 

  10. 10.

    Avdeef, A., Box, K.J., Comer, J.E., Hibbert, C. and Tam, K.Y., Pharm. Res., 15 (1998) 209.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Austin, R.P., Davis, A.M. and Manners, C.N., J. Pharm. Sci., 84 (1995) 1180.

    PubMed  CAS  Google Scholar 

  12. 12.

    Irvine, J.D., Takahashi, L., Lockhart, K., Cheong, J., Tolan, J.W., Selick, H.E. and Grove, R., J. Pharm. Sci., 88 (1999) 28.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Artursson, P. and Karlsson, J., Biochem. Biophys. Res. Commun., 175 (1991) 880.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Camenisch, G., Alsenz, J., van de Waterbeemd, H. and Folkers, G., Eur. J. Pharm. Sci., 6 (1998) 313.

    CAS  Article  Google Scholar 

  15. 15.

    Norinder, U., Österberg, T. and Artursson, P., Pharm. Res., 14 (1997) 1786.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Norinder, U., Sjöberg, P. and Österberg, T., J. Pharm. Sci., 87 (1998) 952.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Norinder, U., Österberg, T. and Artursson, P., Eur. J. Pharm. Sci., 8 (1999) 49.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    MacroModel version 5.5, Department of Chemistry, Columbia University, New York, NY.

  19. 19.

    Spartan version 4.1, Wavefunction, Inc., Irvine, CA.

  20. 20.

    MolSurf version 2.0, Qemist AB, Karlskoga, Sweden.

  21. 21.

    Sjöberg, P., In van de Waterbeemd, H., Testa, B. and Folkers, G. (Eds.) Computer-Assisted Lead Finding and Optimization: Current Tools for Medicinal Chemistry, VHCA, Basel, 1997, pp. 83–92.

    Google Scholar 

  22. 22.

    Sybyl version 6.5.1A, Tripos, Inc., St. Louis, MO.

  23. 23.

    ACD/logD Batch version 3.50, Advanced Chemistry Development, Inc., Toronto, ON.

  24. 24.

    ACD/logP Batch version 3.50, Advanced Chemistry Development, Inc., Toronto, ON.

  25. 25.

    Marengo, E. and Todeschini, R., Chem. Intell. Lab. Systems, 16 (1992) 37.

    CAS  Article  Google Scholar 

  26. 26.

    Jackson, J.E., A Users Guide to Principal Components, Wiley & Sons, New York, NY, 1991.

    Book  Google Scholar 

  27. 27.

    Joliffe, I.T., Principal Component Analysis, Springer Verlag, New York, NY, 1986.

    Google Scholar 

  28. 28.

    Wold, S., Johansson, E. and Cocchi, M., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design, ESCOM, Leiden, 1993, pp. 523–550.

    Google Scholar 

  29. 29.

    Wold, S., Technometrics, 20 (1979) 379.

    Google Scholar 

  30. 30.

    Wold, S., Albano, C., Dunn III, W.J., Edlund, U., Esbensen, K., Geladi, P., Johansson, E., Lindberg, W. and Sjöström, M., In Kowalski, B.R. (Ed.) Chemometrics-Mathematics and Statistics in Chemistry, Reidel, Dordrecht, 1984, pp. 17–95.

    Google Scholar 

  31. 31.

    Craig, P.N., Cumulative Subject Index and Drug Compendium, Vol. 6, In Hansch, C., Sammes, P.G. and Taylor, J.B. (Eds.) Comprehensive Medicinal Chemistry, Pergamon Press, Oxford, 1990, pp. 237–991.

    Google Scholar 

  32. 32.

    Palm, K., Luthman, K., Ungell, A.L., Strandlund, G. and Artursson, P., J. Pharm. Sci., 85 (1996) 32.

    Google Scholar 

  33. 33.

    Barbato, F., Caliendo, G., la Rotonda, M.I., Morrica, P., Silipo, C. and Vittoria, A., Farmaco, 45 (1990) 647.

    PubMed  CAS  Google Scholar 

  34. 34.

    Yazdanian, M., Glynn, S., Wright, J. and Hawi, A., Pharm. Res., 15 (1998) 1490.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ulf Norinder.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Norinder, U., Österberg, T. The applicability of computational chemistry in the evaluation and prediction of drug transport properties. Perspectives in Drug Discovery and Design 19, 1–18 (2000).

Download citation

  • blood–brain barrier
  • Caco-2 cell membranepermeability
  • human intestinal absorption
  • log D
  • log K s
  • log P
  • MolSurf
  • PLS