Skip to main content
Log in

On the Origin of the Heterogeneous Emission from Pyrene Sequestered Within Tetramethylorthosilicate-Based Xerogels: A Decay-Associated Spectra and O2 Quenching Study

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Steady-state and time-resolved fluorescence spectroscopy are used to determine the local microheterogeneity surrounding pyrene molecules sequestered within tetramethylorthosilicate-derived xerogels. After compensation for the intrinsic background emission from the xerogel, we find that the pyrene intensity decay kinetics are best described by a two-term rate law. This is consistent with the pyrene molecules distributing primarily into two microenvironments. Under ambient conditions, the individual pyrene microenvironments exhibit excited-state fluorescence lifetimes that differ by ∼100 ns. However, the pyrene I1 to I3 band ratios that are associated with each microenvironment are statistically equivalent to one another. These results show that the local dipolarity surrounding these pyrene microenvironments are similar, but the decay rates associated with each microenvironment are very different. The longer-lived pyrene species (Environment #1) constitutes ∼1/2 of the total fluorescence and it exhibits an O2 quenching sensitivity (Ksv1) of (5.19 ± 0.52 × 10−3 %O2 −1 and a bimolecular quenching constant (kq1) of (2.30 ± 0.23) × 104 %O2 −1 s−1. Environment #2, associated with the shorter-lived pyrene species, exhibits an O2 quenching sensitivity (Ksv2) of (2.31 ± 0.16) × 10−2 %O2 −1 and a bimolecular quenching constant (kq2) of (2.11 ± 0.23) × 105 %O2 −1 s−1. These results are interpreted as follows: Environment #1 consists of pyrene molecules sequestered within a relatively rigid siloxane network wherein non-radiative decay pathways are lessened, but these pyrene molecules are not quenched readily by O2. Environment #2 consists of pyrene molecules adsorbed onto surface silanols within the xerogel. These pyrene molecules are quenched by the silanols and they are simultaneously more accessible to O2 compared to Environment #1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L.L. Hench, Chemical Processing of Advanced Materials, edited by J.K. West (Wiley, New York, 1992).

    Google Scholar 

  2. L.L. Hench and J.K. West, Chem. Rev. 33, 90 (1990).

    Google Scholar 

  3. A. Paul, Chemistry of Glasses, 2nd edition, (Chapman and Hall, New York, 1990), pp. 51-85.

    Google Scholar 

  4. C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, New York, 1989).

    Google Scholar 

  5. B.C. Dave, B. Dunn, J.S. Valentine, and J.I. Zink, Anal. Chem. 66, 1121A (1994).

    Google Scholar 

  6. O. Lev., M. Tsionsky, L. Rabinovich, V. Glezer, S. Sampath, I Pankratov, and J. Gun, Anal. Chem. 67, 22A (1995).

    Google Scholar 

  7. R. Reisfeld, Chemistry, Spectroscopy, and Applications of Sol-Gel Glasses, edited by C.K. Jorgeson (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  8. D. Levy, in Proceedings of the First European Workshop on Hybrid Organic Inorganic Materials (Synthesis, Properties, Applications), edited by C. Sanchez and F. Ribot 1993, pp. 77-95, Paris, France.

  9. C. Rotman, M. Ottolenghi, R. Zusman, O. Lev., M. Smith, G. Gong, M.L. Kagan, and D. Avnir, Mater. Lett. 13, 293 (1992).

    Google Scholar 

  10. R. Zusman, C. Rottman, M. Ottolenghi, and D. Avnir, J. Non-Cryst. Solids 122, 107 (1990).

    Google Scholar 

  11. B. Dunn and J.I. Zink, J. Mater. Chem. 1, 903 (1991).

    Google Scholar 

  12. Y. Zhang, P.N. Prasad, and R. Burzynski, Chemical Processing of Advanced Materials, edited by L.L. Henon, and J.K. West (Wiley, New York, 1992), p. 825.

    Google Scholar 

  13. C. Ingersoll and F.V. Bright, CHEMTECH 27, 26 (1997).

    Google Scholar 

  14. S. Braun, S. Rappoport, R. Zusman, D. Avnir, and M. Ottolenghi, Mater. Lett. 10, 1 (1990).

    Google Scholar 

  15. L.M. Ellerby, C.R. Nishida, F. Nishida, S.A. Yamanaka, B. Dunn, J.S. Valentine, and J.I. Zink, Science 255, 1113 (1992).

    Google Scholar 

  16. R. Wang, U. Narang, F.V. Bright, and P.N. Prasad, Anal. Chem. 65, 2671 (1993).

    Google Scholar 

  17. N. Aharonson, M. Alstein, G. Avidan, D. Avnir, A. Bronshtein, A. Lewis, K. Lieberman, M. Ottolenghi, Y. Polevaya, C. Rottman, J. Samuel, S. Shyalom, A. Strinkovski, and A. Turniansky, Better Ceramics Through Chemistry, VI, edited by C. Sanchez, M.L. Mecartney, C.J. Brinker, and A. Cheetham (Res. Soc. Proc. 346, 1994) pp. 1-12.

  18. U. Narang, P.N. Prasad, F.V. Bright, A. Kumar, N.D. Kumar, B.D. Malhotra, M.N. Kamalasanan, and S. Chandra, Anal. Chem. 66, 3139 (1994).

    Google Scholar 

  19. G. Carturan, R. Campostrini, S. Dire, V. Scardi, and E.J. DeAlteriis, Molec. Catal. 57, L13 (1989).

    Google Scholar 

  20. S. Shtelzer, S. Rappoport, D. Avnir, M. Ottolenghi, and S. Braun, Biotech. Appl. Biochem. 15, 227 (1992).

    Google Scholar 

  21. P.L. Edmiston, C.L. Wambolt, M.K. Smith, and S.S. Saavedra, J. Colloid Interface Sci. 163, 395 (1994).

    Google Scholar 

  22. D. Avnir, S. Braun, O. Lev, and M. Ottolenghi, Sol-Gel Optics II, SPIE Symposium Series, edited by J.D. Mackouzey (Bellingham, WA, 1992). Vol. 1758, pp. 1-8.

  23. D. Avnir, S. Braun, and M. Ottolenghi, ACS Symposium Series, edited by T. Beim, 1992, Vol. 999.

  24. L. Inama, S. Dire, G. Carturan, and A. Cavazza, J. Biotech. 30, 197 (1993).

    Google Scholar 

  25. S. Wu, L.M. Ellerby, J.S. Cohan, B. Dunn, M.A. El-Sayed, J.S. Valentine, and J.I. Zink, Chem. Mater. 5, 115 (1993).

    Google Scholar 

  26. J.I. Zink, and B. Dunn, Proceedings of the First EuropeanWorkshop on Hybrid Organic Inorganic Materials (Synthesis, Properties, Applications), edited by C. Sanchez and F. Ribot, 1993, pp. 143-152.

  27. Y. Kurokawa, H. Ohta, M. Okubo, and M. Takahashi, Carbohydrate Polym. 23, 1 (1994).

    Google Scholar 

  28. R.A. Dunbar, J.D. Jordan, and F.V. Bright, Anal. Chem. 68, 604 (1996).

    Google Scholar 

  29. U. Narang, J.D. Jordan, F.V. Bright, and P.N. Prasad, J. Phys. Chem. 98, 8101 (1994).

    Google Scholar 

  30. J.C. Pouxviel, B. Dunn, and J.I. Zink, J. Phys. Chem. 93, 2134 (1989).

    Google Scholar 

  31. D. L'Experance and E.L. Chronister, Chem. Phys. Lett. 201, 229 (1993).

    Google Scholar 

  32. C.H. Lochmuller, D.B. Marshall, and D.R. Wilder, Anal. Chim. Acta 130, 31 (1981).

    Google Scholar 

  33. C.H. Lochmuller, D.B. Marshall, and J.M. Harris, Anal. Chim. Acta 131, 263 (1981).

    Google Scholar 

  34. V.R. Kaufman and D. Avnir, Langmuir 2, 717 (1986).

    Google Scholar 

  35. J.B. Birks, Photophysics of Aromatic Molecules (Wiley, New York, 1970).

    Google Scholar 

  36. D.C. Dong and M. Winnik, Photochem. Photobiol. 35, 17 (1982).

    Google Scholar 

  37. A.L. Wong, M.L. Hunnicutt, and J.M. Harris, Anal. Chem. 63, 1076 (1991).

    Google Scholar 

  38. D.S. Karpovich and G.J. Blanchard, J. Phys. Chem. 99, 3951 (1995).

    Google Scholar 

  39. D.J.S. Birch and R.E. Imhof, Topics in Fluorescence Spectroscopy, edited by J.R. Lakowicz (Plenum, New York, 1991), Chap. 1.

    Google Scholar 

  40. M.G. Badea and L. Brand, Methods Enzymol. 61, 378 (1971).

    Google Scholar 

  41. D. Phillips and D.V. O'Connor, Time Correlated Single Photon Counting (Plenum, New York, 1984).

    Google Scholar 

  42. J. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum Press, New York, 1983).

    Google Scholar 

  43. M.G. Badea and L. Brand, Methods Enzymol. 61, 378 (1979).

    Google Scholar 

  44. R. Knutson, D.G. Walbridge, and L. Brand, Biochemistry 21, 4671 (1982).

    Google Scholar 

  45. S. Green, J.R. Knutson, and P. Hensley, Biochemistry 29, 9159 (1990).

    Google Scholar 

  46. J.M. Beechem, J.R. Knutson, J.B. Alexander Ross, B.W. Turner, and L. Brand, Biochemistry 22, 6054 (1983).

    Google Scholar 

  47. J.R. Knutson, J.M. Beechem, and L. Brand, Chem. Phys. Lett. 102, 501 (1983).

    Google Scholar 

  48. J.M. Beechem, M. Ameloot, and L. Brand, Chem. Phys. Lett. 120, 466 (1985).

    Google Scholar 

  49. M.R. Eftink, Topics in Fluorescence Spectroscopy: Principles, edited by J.R. Lakowicz (Plenum Press, New York, 1991), Chap. 2, Vol. 2.

    Google Scholar 

  50. T. Yamanaka, Y. Takahashi, T. Kitamura, and K. Uchida, Chem. Phys. Lett. 172, 29 (1990).

    Google Scholar 

  51. K. Matsui and N. Usuki, Bull. Chem. Soc. Jpn. 63, 3516 (1990).

    Google Scholar 

  52. K. Hara, P. De Mayo, W.R. Ware, A.C. Weedon, G.S.K. Wong, and K.C. Wu, Chem. Phys. Lett. 69, 105 (1980).

    Google Scholar 

  53. P. Levitz, H. Van Damme, and D. Keravis, J. Phys. Chem. 88, 2228 (1984).

    Google Scholar 

  54. Y. Takahashi, T. Kitamura, K. Uchida, and T. Yamanaka, Jpn. J. Appl. Phys. 28, 1609 (1989).

    Google Scholar 

  55. R.K. Bauer, P.D. Mayo, R.W. Ware, and K.C. Wu, J. Phys. Chem. 86, 3781 (1982).

    Google Scholar 

  56. C.H. Lochmuller and T.J. Wenzel, J. Phys. Chem. 94, 4230 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonzagni, N.J., Baker, G.A., Pandey, S. et al. On the Origin of the Heterogeneous Emission from Pyrene Sequestered Within Tetramethylorthosilicate-Based Xerogels: A Decay-Associated Spectra and O2 Quenching Study. Journal of Sol-Gel Science and Technology 17, 83–90 (2000). https://doi.org/10.1023/A:1008717207199

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008717207199

Navigation