Skip to main content
Log in

Molecular dynamics study of edge dislocation motion in a bcc metal

  • Published:
Journal of Computer-Aided Materials Design

Abstract

The motion of an edge dislocation gliding in a bcc lattice under shear loading is simulated by molecular dynamics. The time evolution of the dislocation profile, derived by analyzing the spatial disregistry between two adjacent atomic rows, reveals frequent nucleation of double kinks and little activity in kink migration in association with the dislocation motion. An essentially linear stress variation is obtained, while the temperature dependence suggests the mechanism of phonon drag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirth, J.P. and Lothe, J., Theory of Dislocations, Wiley, New York, NY, 1982.

    Google Scholar 

  2. Nadgornyi, E., Dislocation Dynamics and Mechanical Properties of Crystals, Progress in Material Science, Vol. 31, 1988.

  3. Daw, M.S., Baskes, M.I., Bisson, C.L. and Wolfer, W.G., Modeling Environmental Effects on Crack Growth Processes, TMS-AIME, New York, NY, 1986.

    Google Scholar 

  4. Moncevicz, A., Clapp, P.C. and Rifkin, J.A., Defects in Materials Symposium, Boston, MA 1990, MRS, Pittsburgh, PA, 1990.

  5. Klahn, D., Mukherjee, A.K. and Dorn, J.E., Strength of Metals and Alloys, Proceedings of the Second International Conference, American Society of Metals, Cleveland, OH, 1970, p. 951.

  6. Neuhauser, H., In Haasen, P. et al. (Eds.) Strength of Metals and Alloys, Proceedings of the Fifth International Conference, Pergamon Press, Oxford, 1979, p. 1531.

    Google Scholar 

  7. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford University Press, Oxford, 1989.

    Google Scholar 

  8. Frenkel, D. and Smit, B., Understanding Molecular Simulation, Academic Press, San Diego, CA, 1996.

    Google Scholar 

  9. Finnis, M.W. and Sinclair, J.E., Phil. Mag. A, 50 (1984) 45.

    CAS  Google Scholar 

  10. Ackland, G.J. and Thetford, R., Phil. Mag. A, 56 (1987) 15.

    CAS  Google Scholar 

  11. Leiko, E.B., Lotsko, D.V., Nadgornyi, E.M. and Trefilov, V.I., Fizika Tverdogo Tela, 17 (1975) 2735.

    CAS  Google Scholar 

  12. Pariiskii, V.B., Lubenets, S.V. and Startsev, V.I., Soviet Phys. Solid State, 8 (1966) 976.

    Google Scholar 

  13. Alshits, V.I. and Indenbom, V.L., Dislocation in Solids, Vol. 7, 1986, p. 43.

    CAS  Google Scholar 

  14. Jassby, K.M. and Vreeland, T., Phys. Rev. B, 8 (1973) 3537.

    Article  CAS  Google Scholar 

  15. Voter, A.F., Phys. Rev. Lett., 78 (1997) 3908.

    Article  CAS  Google Scholar 

  16. Voter, A.F., Phys. Rev. B, 57 (1998) 13985.

    Article  Google Scholar 

  17. Bulatov, V.V. and Kubin, L.P., Current Opinion in Solid State & Material Science, Vol. 3, 1998, p. 558.

    Article  CAS  Google Scholar 

  18. Cai, W., Bulatov, V.V., Justo, J.F., Yip, S. and Argon, A.S., Dynamics of Dissociated Dislocations in Si: A Micro-meso Simulation Methodology, In Materials Research Society Proceeding, Vol. 538, 1999.

  19. Cai, W., Bulatov, V.V. and Yip, S., J. Comput. Aided Mater. Des., 6 (1999) 175 (this issue).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, J., Bulatov, V.V. & Yip, S. Molecular dynamics study of edge dislocation motion in a bcc metal. Journal of Computer-Aided Materials Design 6, 165–173 (1999). https://doi.org/10.1023/A:1008716911551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008716911551

Navigation