A recursive algorithm for efficient combinatorial library docking

Abstract

Due to the rapid development of combinatorial chemistry and high throughput screening, a new virtual screening scenario emerged. While previously the focus was on analyzing large collections of compounds available to the medicinal chemist, nowadays the search space is defined in the form of large, possibly virtual, combinatorial libraries. In this article we describe how the structure of combinatorial libraries can be exploited to speed up docking predictions. Based on our incremental construction method implemented in the docking software FlexX we developed a recursive scheme to traverse the combinatorial library space efficiently. We applied our docking algorithm to three libraries with sizes from a few hundred up to 20 000 molecules. In all cases, we are able to show that similar results are achieved as in a sequential docking of the library molecules. The computing time, however, can be reduced by a factor of up to 30 resultingin an average time of about 5 s per library molecule.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, P.A. and Gordon, E.M., J.Med. Chem., 37 (1994) 1233.

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Gordon, E.M., Barrett, R.W., Dower, W.J., Fodor, P.A. and Gallop, M.A., J.Med. Chem., 37 (1994) 1386.

    Article  Google Scholar 

  3. 3.

    Walters, W.P., Stahl, M.T. and Murcko, M.A., Drug Disc. Today, 3 (1998) 160.

    CAS  Article  Google Scholar 

  4. 4.

    Kubinyi, H., Curr. Opin. Drug Discov. Development, 1 (1998) 16.

    CAS  Google Scholar 

  5. 5.

    Kuntz, I.D., Science, 257 (1992) 1078.

    PubMed  CAS  Google Scholar 

  6. 6.

    Blaney, J.M. and Dixon, J.S., Perspect. Drug Discov. Design, 1 (1993) 301.

    CAS  Article  Google Scholar 

  7. 7.

    Lewis, R.A. and Meng, E.C., In Vinter, J.G. and Gardner, M. (Eds.), Molecular Modelling and Drug Design, CRC Press, Boca Raton, FL, 1994.

    Google Scholar 

  8. 8.

    Guida, W.C., Curr. Opin. Struct. Biol., 4 (1994) 777.

    CAS  Article  Google Scholar 

  9. 9.

    Colman, P.M., Curr. Opin. Struct. Biol., 4 (1994) 868.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Rosenfeld, R., Vajda, S. and DeLisi, C., Annu. Rev. Biophys. and Biomol. Struct., 24 (1995) 677.

    CAS  Article  Google Scholar 

  11. 11.

    Böhm, H.-J., Curr. Opin. Biotechnol., 7 (1996) 433.

    PubMed  Article  Google Scholar 

  12. 12.

    Lengauer, T. and Rarey, M., Curr. Opin. Struct. Biol., 6 (1996) 402.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Rarey, M., Kramer, B., Bernd, C. and Lengauer, T., In Hunter, L. and Klein, T. (Eds.), Biocomputing: Proceedings of the 1996 Pacific Symposium (electronic version at http://www.cgl.ucsf.edu/psb/psb96/proceedings/eproceedings.html). World Scientific Publishing Co, Singapore, 1996.

    Google Scholar 

  14. 14.

    Makino, S. and Kuntz, I.D., J. Comput. Chem., 19 (1998) 1834.

    CAS  Article  Google Scholar 

  15. 15.

    Murray, C.W., Clark, D.E., Auton, T.R., Firth, M.A., Li, J., Sykes, R.A., Waszkowycz, B., Westhead, D.R. and Young, S.C., J. Comput.-Aided Mol. Design, 11 (1997) 193.

    CAS  Article  Google Scholar 

  16. 16.

    Sun, Y., Ewing, T.J.A., Skillman, A.G. and Kuntz, I.D., J. Comput.-Aided Mol. Design, 12 (1999) 597.

    Article  Google Scholar 

  17. 17.

    Kick, E.K., Roe, D.C., Skillman, A.G., Guangcheng, L., Ewing, T.J.A., Sun, Y., Kuntz, I.D. and Ellman, J.A., Chem. Biol., 4 (1997) 297.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Roe, D.C. and Kuntz, I.D., J. Comput.-Aided Mol. Design, 9 (1995) 269.

    CAS  Article  Google Scholar 

  19. 19.

    Böhm, H.J., Banner, D.W. and Weber, L., J. Comput.-Aided Mol. Design, 13 (1999) 51.

    Article  Google Scholar 

  20. 20.

    Caflisch, A., J. Comput.-Aided Mol. Design, 10 (1996) 372.

    CAS  Article  Google Scholar 

  21. 21.

    Makino, S., Ewing, T.J.A. and Kuntz, I.D., J. Comput.-Aided Mol. Design, 13 (1999) 513.

    CAS  Article  Google Scholar 

  22. 22.

    Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Rarey, M., Kramer, B. and Lengauer, T., J. Comput.-Aided Mol. Design, 11 (1997) 369.

    CAS  Article  Google Scholar 

  24. 24.

    Kramer, B., Rarey, M. and Lengauer, T., Proteins Struct. Funct. Genet., 37 (1999) 228.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Rarey, M., Wefing, S. and Lengauer, T., J. Comput.-Aided Mol. Design, 10 (1996) 41.

    CAS  Article  Google Scholar 

  26. 26.

    Böhm, H.-J., Thrombin-Inhibitors, collected experimental data, personal communication.

  27. 27.

    Selassie, C.D., Fang, Z., Li, R., Hansch, C., Debnath, G., Klein, T.E., Langridge, R. and Kaufman, B.T., J. Med. Chem., 32 (1989) 1895.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Weber, L., Wallbaum, S., Broger, C. and Gubernator, K., Angew. Chem. Int. Ed. Engl., 34 (1995) 2280.

    CAS  Article  Google Scholar 

  29. 29.

    Tripos Associates, Inc., St. Louis, MO, U.S.A., SYBYL Molecular Modeling Software Version 6.x, 1994.

  30. 30.

    Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    PubMed  CAS  Google Scholar 

  31. 31.

    Banner, D.W. and Hadvary, P., J. Biol. Chem., 266 (1991) 20085.

    PubMed  CAS  Google Scholar 

  32. 32.

    Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rarey, M., Lengauer, T. A recursive algorithm for efficient combinatorial library docking. Perspectives in Drug Discovery and Design 20, 63–81 (2000). https://doi.org/10.1023/A:1008716720979

Download citation

  • combinatorial docking
  • combinatorial libraries
  • conformational analysis
  • drug design
  • molecular docking
  • receptor ligand interaction