Skip to main content
Log in

Disclination Mechanism of Plastic Deformation of Nanocrystalline Materials

  • Published:
Interface Science

Abstract

A model describing mechanical behaviour of nanocrystalline materials (NC) obtained by crystallization from amorphous precursor is presented. In the framework of this model a structure of such NCs is represented as a composite consisting of amorphous matrix and absolutely rigid inclusions corresponding to crystalline phase. Dependencies of stress concentration coefficient and yield stress of NCs on the average grain size are obtained. It is shown that the dependence of the yield stress has a point of inflection at the critical grain size in the range of 20–25 nm and is inverse to the Hall-Petch relationship at grain sizes smaller than the critical one. The model predicts a formation of a superlattice from disclinations located in triple junctions of grains on the stage of NC plastic flow. A process of the plastic flow of NC's amorphous matrix and amorphous metallic alloys is described as a go-ahead mechanism of dislocation movement, which includes emission, absorption and reemission of dislocations by disclinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.R.S. Kelly, Strong Solids (Clarendon Press, Oxford, 1973).

    Google Scholar 

  2. G.D. Chokshi, A. Rosen, J. Karch, and A. Gleiter, Scripta Met. Mater. 23, 1679 (1989).

    Google Scholar 

  3. H. Alves, M. Ferreira, U. Koster, and B. Muller, Mater. Sci. Forum. 225-227, 769 (1996).

    Google Scholar 

  4. K. Lu, W.D. Wei, and J.T. Wang, Scripta Met. Mater. 24, 2319 (1990).

    Google Scholar 

  5. X.D. Liu, J.T. Wang, and B.Z. Ding, Scripta Met. Mater. 28, 59 (1993).

    Google Scholar 

  6. K. Lu and M.L. Sui, Scripta Met. Mater. 28, 1465 (1993).

    Google Scholar 

  7. G.W. Nieman, J.R. Weertman, and R.W. Siegel, Scripta Met. 23, 2023 (1989).

    Google Scholar 

  8. J.S.C. Jang and C.C. Koch, Scripta Met. Mater. 24, 1599 (1990).

    Google Scholar 

  9. R.Z. Valiev, N.A. Krasilnicov, and N.K. Tsenev, Mater. Sci. Eng. A 137, 35 (1991).

    Google Scholar 

  10. G.D. Hughes, S.D. Smith, C.S. Pande et al., Scripta Met. 20, 93 (1986).

    Google Scholar 

  11. V.G. Gryaznov, M. Yu. Gutkin, A.E. Romanov, and L.I. Trusov, Mater. Sci. 28, 4359 (1993).

    Google Scholar 

  12. A.A. Nazarov, Scripta Met. Mater. 34, 697 (1996).

    Google Scholar 

  13. L.N. Larikhov, Metallofizika 14, 3 (1992).

    Google Scholar 

  14. V.I. Vladimirov and A.E. Romanov, Disclination in Crystals (Nauka, Leningrad 1986) (in Russian).

    Google Scholar 

  15. V.V. Rybin, Large Plastic Deformation and Fracture Metals (Metallurgiya, Moscow, 1986) (in Russian).

    Google Scholar 

  16. V.V. Rybin, A.A. Zisman, and N. Yu. Zolotorevsky, Acta Metall. 41, 2211 (1993).

    Google Scholar 

  17. S.G. Zaichenko, A.V. Shalimova, A.O. Titov, and A.M. Glezer, Interface Sci. 3, 203 (1996).

    Google Scholar 

  18. H. Gleiter, Mater. Sci. Eng. 52, 91 (1982).

    Google Scholar 

  19. R.C. Morris, Appl. Phys. Appl. Phys. 50, 3250 (1979).

    Google Scholar 

  20. N. Rivier and D.M. Duffy, J. Physique (Fr.) 43, 295 (1982).

    Google Scholar 

  21. S.G. Zaichenko and V.T. Borisov, DAN SSSR 263, 622 (1982).

    Google Scholar 

  22. S.G. Zaichenko and V.T. Borisov, Structure and Properties of Amorphous Alloys (Nauka, Ustinov, 1984) (in Russian).

    Google Scholar 

  23. A.M. Glezer and B.V. Molotilov, Structure and Mechanical Properties of Amorphous Alloys (Metallurgiya, Moscow, 1992) (in Russian).

    Google Scholar 

  24. T. Imura and M. Doi, Trans. Japan Inst. Metals. 24, 396 (1983).

    Google Scholar 

  25. K. Krishan, Non-Cryst. Solids 53, 83 (1982).

    Google Scholar 

  26. Glassy Metals, 2nd volume, edited by H. Bek and H.-J. Guntherodt (Springer-Verlag, Berlin, Haidelberg, New-York, Tokyo, 1983).

    Google Scholar 

  27. S.G. Zaichenko and A.P. Braginskyi, Metallofizika 12, 15 (1990).

    Google Scholar 

  28. I.E. Bolotov, V. Yu. Kolosov, and A.V. Korzhun, Phys. Stat. Solidi 72, 645 (1982).

    Google Scholar 

  29. O. Bostanjoglo, Phys. Stat. Solidi 76, 525 (1983).

    Google Scholar 

  30. I.E. Bolotov and V.L. Prilepo, Phys. Stat. Solidi (a) 80, K67 (1983).

    Google Scholar 

  31. V.E. Panin, V.A. Likhachov, and V. Yu. Grinyev, Structure Levels of Deformation of Solid States (Nauka, Novosibirsk, 1985) (in Russian).

    Google Scholar 

  32. G.I. Tailor, J. Inst. Met. 62, 307 (1938).

    Google Scholar 

  33. V.N. Perevezentsev, A.V. Shalimova, and M. Yu. Tsherban, Metallofizika 10, 26 (1988).

    Google Scholar 

  34. R.Z. Valiev, R.R. Mulukhov, V.V. Ovchinnikhov et al., Metallofizika 12, 124 (1990).

    Google Scholar 

  35. T. Spassov and U. Koster, Mater. Sci. 28, 2789 (1993).

    Google Scholar 

  36. D.G. Ast and D.J. Krenitsky, Mater. Sci. Eng. 43, 241 (1980).

    Google Scholar 

  37. A.K. Eringen, Theory of Elasticity Fracture, 2nd volume, edited by H. Liebowitz (Mathematical Fundamentals), (Academic Press, New York and London, 1968).

    Google Scholar 

  38. R.J. Hartranft and G.C. Sih, Transact. Amer. Society for Mechan. Eng., S.E. 32, 429 (1965).

    Google Scholar 

  39. A.S. Kosmodamianskyi, Stresses State of Anisotropic Medium with Holes or Caves (Vysshaya skola, Kiyv, 1976) (in Russian).

  40. M.A. Sadovsky and Y.C. Das, Composite Mater. 1, 174 (1967).

    Google Scholar 

  41. Y. Ishida and S. Iyama, Acta Metall. 24, 417 (1976).

    Google Scholar 

  42. R. de Wit, Appl. Phys. 42, 3304 (1971).

    Google Scholar 

  43. W.F. Harris and L.E. Scriven, Appl. Phys. 42, 3309 (1971).

    Google Scholar 

  44. S.G. Zaichenko and V.T. Borisov, DAN SSSR 277, 1126 (1984).

    Google Scholar 

  45. S.G. Zaichenko, in press.

  46. R. de Wit, J. Res. Nat. Bureau of Stand. 77A, 607 (1973).

    Google Scholar 

  47. J.P. Hirth and J. Lothe, Theory of Dislocation (John Wiley & Sons, New York, 1968).

    Google Scholar 

  48. V.I. Vladimirov, Physical Nature of Fracture Metals (Metallurgiya, Moscow, 1984) (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaichenko, S., Glezer, A. Disclination Mechanism of Plastic Deformation of Nanocrystalline Materials. Interface Science 7, 57–67 (1999). https://doi.org/10.1023/A:1008714612121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008714612121

Navigation