Skip to main content
Log in

The Evolution of Microstructure in Nonhydrolytic Alumina Xerogels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The effect of drying, aging and thermal treatment of alumina xerogels prepared by the nonhydrolytic route was investigated using SAXS, BET and HR-SEM techniques. The microstructure of the fresh xerogels prepared under different procedures varied drastically, ranging from aerogel-like mass fractals to narrow pore size distribution materials. By variation of the drying conditions the N2-BET surface area was varied from an immeasurable low level up to 600 m2/g. The initial microstructure has a significant influence on the xerogel behaviour during the post-drying heating stage. The ability to produce aerogel-like mass fractal materials from the nonhydrolytic systems is discussed. Finally, a brief theoretical treatment of the drying process of mass fractals is presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physicsand Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  2. Sol-Gel Technology for Thin films, Fibers, Preforms, Electronics, and SpecialtyShapes, edited by L.C. Klein (Noyes, Park Ridge, New Jersey, 1988).

    Google Scholar 

  3. B. Himmel, Th. Gerber, H. Buerger, G. Holzhueter, and A. Olbertz, J. Non-Cryst.Solids 186, 149–158 (1995).

    Google Scholar 

  4. A. Emmerling, J. Gross, R. Gerlach, R. Goswin, G. Reichenauer, and J. Fricke, J. Non-Cryst. Solids 125, 230–243 (1990).

    Google Scholar 

  5. A. Emmerling and J. Fricke, J. Non-Cryst. Solids 145, 113–120 (1992).

    Google Scholar 

  6. D.W. Schafer, B.J. Olivier, C.S. Ashley, D. Richter, B. Farago, B. Frick, L. Hrubesh, M.J. van Bommel, G. Long, and S. Krueger, J. Non-Cryst. Solids 145, 105–112 (1992).

    Google Scholar 

  7. D.W. Schaefer, R. Pekala, and G. Beaucage, J. Non-Cryst. Solids 186, 159–167 (1995).

    Google Scholar 

  8. S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Better ceramics through chemistry VI, Mater. Res. Soc. Symp. Proc. 346, 43 (1994).

    Google Scholar 

  9. R.J.P. Corriu and D. Leclercq, Angewandte Chemie, Intern. Ed. in English35, 1420–1436 (1996).

    Google Scholar 

  10. A. Vioux and D. Leclercq, HeterogeneousChemistry Reviews 3, 65–73 (1996).

    Google Scholar 

  11. R.J.P. Corriu and D. Leclercq,Comments on Inorganic Chemistry 19, 245–262 (1997).

    Google Scholar 

  12. A. Vioux,Chem. Mater. 9, 2292–2299 (1997).

  13. P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chemistry 6, 1925–1962 (1996); M. Andrianainarivelo, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chemistry 6, 1665–1671 (1996); P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Chemistry of Materials 9, 694-698 (1997); M. Andrianainarivelo, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chemistry 7, 279-284 (1997).

    Google Scholar 

  14. P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Better ceramics through chemistry VI, Mater. Res. Soc. Symp. Proc. 346, 339 (1994).

    Google Scholar 

  15. S. Acosta, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Betterceramics through chemistry VI, Mat. Res. Soc. Symp. Proc. 346, 345 (1994).

    Google Scholar 

  16. S. Acosta, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J.Non-Cryst. Solids. 170, 234 (1994).

    Google Scholar 

  17. G.S. Grader, Y. de Hazan, Y. Cohen, and D. Bravo-zhivotovskii, J. Sol-Gel Sci. Tech. 10, 5–12 (1997).

    Google Scholar 

  18. G.S. Grader, Y. de Hazan, D. Bravo-zhivotovskii, and G.E. Shter, J.Sol-Gel Sci. Tech. 10, 127–137 (1997).

    Google Scholar 

  19. O. Glatter and O. Kratky,Small Angle X-Ray Scattering (Academic Press, NY, 1982), p. 121.

    Google Scholar 

  20. D.M. Smith, R. Deshpande, and C.J. Brinker, Mat. Res. Soc. Symp. Proc.271, 567 (1992); R. Deshpande, D. Hua, D.M. Smith, and C.J. Brinker, J. Non-Cryst. Solids 144, 32–44 (1992); S.S. Parkash, C.J. Brinker, A.J. Hurd, and S.M. Rao, Nature 374, 439-443 (1995).

    Google Scholar 

  21. N. Husing and U. Schubert, Angew. Chem. Int. Ed.37, 22–45 (1998).

    Google Scholar 

  22. C.J. Brinker, Transactions ACA 27, 163–190 (1991).

    Google Scholar 

  23. D.W. Schaefer, Revue de Physique Appliquee 24, 121–126 (1989).

    Google Scholar 

  24. The Fractal Approach to Heterogeneous Chemistry, edited byD. Avnir (John Wiley & Sons, Chichester, 1990).

    Google Scholar 

  25. P. Meakin and R. Jullien, J. Chem. Phys. Rev. B 31, 246–250 (1988).

    Google Scholar 

  26. N. Olivi-Tran and R. Jullien, J. Sol-Gel Tech. 8, 813–817 (1997).

    Google Scholar 

  27. T. Woignier, L. Duffours, I. Beurrois, and J. Phalippou, J. Sol-Gel Tech. 8,789–794 (1997).

    Google Scholar 

  28. Y. Polevaya, J. Samuel, M. Ottolenghi, and D. Avnir,J. Sol-Gel Tech. 5, 65 (1995).

    Google Scholar 

  29. Y. Mizushima and M. Hori, J.Non-Cryst. Solids 167, 1–8 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Hazan, Y., Shter, G., Cohen, Y. et al. The Evolution of Microstructure in Nonhydrolytic Alumina Xerogels. Journal of Sol-Gel Science and Technology 14, 233–247 (1999). https://doi.org/10.1023/A:1008713411672

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008713411672

Navigation