Skip to main content
Log in

Toward Tailored Xerogel Composites: Local Dipolarity and Nanosecond Dynamics within Binary Composites Derived from Tetraethylorthosilane and ORMOSILs, Oligomers or Surfactants

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We explore the potential of xerogel composites to tailor the behavior of active dopants that are sequestered within the xerogel. Toward this end, we report on the local dipolarity and dynamics of two fluorescent probes (pyrene and rhodamine 6G, R6G) each co-doped at low concentration directly into a series of binary xerogel composites. The composites that we have investigated are composed of tetraethylorthosilicate (Si(OCH2CH3)4,TEOS) plus one of several organically-modified silanes (ORMOSILs), organic oligomers, or a common surfactant. For convenience we divide these xerogel composites into two classes: (1) xerogels wherein the organic character arises from the addition of an ORMOSIL co-monomer, possessing a non-hydrolyzable organic functional group, that becomes covalently incorporated with in the xerogel and (2) xerogels wherein the organic content is adjusted by adding organic oligomers or a surfactant. Six organically-modified silylalkoxides of the form R′ n Si(OR)4−n were investigated as ORMOSILs. Poly(ethylene glycol), Nafion, and Ionene 6,2 were tested as oligomers. Triton X-100 was used as the surfactant. To estimate the local dipolarity within these composites we used the static fluorescence from pyrene molecules that were sequestered within the composites. These experiments showed that the local dipolarity surrounding the average pyrene molecule can be tuned significantly, but this depends on the actual organic species that one uses to prepare the xerogel composite. Time-resolved fluorescence anisotropy measurements were used to quantify the R6G mobility within the same composites. These results demonstrate that certain organic additive scan be used to adjust the R6G mobility within the xerogel composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Hench and J.K. West, eds., Chemical Processing of Advanced Materials (Wiley, New York, 1992).

    Google Scholar 

  2. L.L. Hench and J.K. West, Chem. Rev. 33, 90 (1992).

    Google Scholar 

  3. A. Paul, Chemistry of Glasses, 2nd edition (Chapman and Hall, New York, 1990), pp. 51–85.

    Google Scholar 

  4. C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, New York, 1989).

    Google Scholar 

  5. B.C. Dave, B. Dunn, J.S. Valentine, and J.I. Zink, Anal. Chem. 66, 1121A (1994).

    Google Scholar 

  6. O. Lev, M. Tsionsky, L. Rabinovich, V. Glezer, S. Sampath, I. Pankratov, and J. Gun, Anal. Chem. 67, 22A (1995).

    Google Scholar 

  7. R. Reisfeld and C.K. Jorgenson, eds., Chemistry, Spectroscopy, and Applications of Sol-Gel Glasses (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  8. D. Levy, in Proceedings of the First EuropeanWork shop on Hybrid Organic-Inorganic Materials (Synthesis, Properties, Applications), edited by C. Sanchez and F. Ribot (1993), pp. 77–95.

  9. H. Schmidt and B. Seiferling, in Better Ceramics Through Chemistry II, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich, Mater. Res. Soc. Proc. Vol. 73 (Materials Research Society, Pittsburgh, PA 1986), p. 739.

    Google Scholar 

  10. R. Gvishi, G.S. He, P.N. Prasad, U. Narang, M. Li, F.V. Bright, B.A. Reinhardt, J.C. Bhatt, and A.G. Dillard, Appl. Spectrosc. 6, 834 (1995).

    Google Scholar 

  11. R. Gvishi, U. Narang, G. Ruland, D.N. Kumar, and P.N. Prasad, Appl. Organomet. Chem. 11, 107 (1997).

    Google Scholar 

  12. R. Reisfeld, R. Zusman, Y. Cohen, and M. Eyal, Chem. Phys. Lett. 147, 142 (1988).

    Google Scholar 

  13. Y. Zhang, P.N. Prasad, and R. Burzynski, in Chemical Processing of Advanced Materials, edited by L.L. Henon and J.K. West (Wiley, New York, 1992), p. 825.

    Google Scholar 

  14. M. Cichna, P. Markl, D. Knopp, and R. Niessner, Chem. Mater. 9, 2640 (1997).

    Article  Google Scholar 

  15. Y. Guo and L.A. Colón, Anal. Chem. 67, 2511 (1995).

    Google Scholar 

  16. D. Wang, S.L. Chong, and A. Malik, Anal. Chem. 69, 4566 (1997).

    Google Scholar 

  17. U. Narang, F.V. Bright, and P.N. Prasad, Appl. Spectrosc. 47, 229 (1993).

    Google Scholar 

  18. C. Rotman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M.L. Kagan, and D. Avnir, Mater. Lett. 13, 293 (1992).

    Article  Google Scholar 

  19. R. Zusman, C. Rottman, M. Ottolenghi, and D. Avnir, J. NonCryst. Solids 122, 107 (1990).

    Google Scholar 

  20. B. Dunn and J.I. Zink, J. Mater. Chem. 1, 903 (1991).

    Article  Google Scholar 

  21. M.R. Shahriari and J.Y. Ding, in Sol-Gel Optics: Processing and Applications, Chap. 13, edited by L.C. Klein (Kluwer Academic Publishers, New York, 1994).

    Google Scholar 

  22. C.M. Ingersoll and F.V. Bright, CHEMTECH 27, 26 (1997).

    Google Scholar 

  23. E.R. Carraway, J.N. Demas, and B.A. DeGraff, Langmuir 7, 2991 (1991).

    Google Scholar 

  24. D. Avnir, S. Braun, O. Lev, and M. Ottolenghi, SPIE Sol-Gel Optics II 1758, 456 (1992).

    Google Scholar 

  25. U. Narang, R.A. Dunbar, F.V. Bright, and P.N. Prasad, Appl. Spectrosc. 47, 1700 (1993).

    Google Scholar 

  26. C.M. Ingersoll and F.V. Bright, Sol-Gel Based Biosensors, 1997 McGraw-Hill Yearbook of Science and Technology, Encyclopedia of Science & Technology, 1997, pp. 47–48.

  27. J.E. Lee and S.S. Saavedra, Anal. Chim. Acta. 285, 265 (1994).

    Google Scholar 

  28. N. Aharonson, M. Alstein, G. Avidan, D. Avnir, A. Bronshtein, A. Lewis, K. Lieberman, M. Ottolenghi, Y. Polevaya, C. Rottman, J. Samuel, S. Shyalom, A. Strinkovski, and A. Turniansky, in Better Ceramics Through Chemistry, VI, edited by C. Sanchez, M.L. Mecartney, C.J. Brinker, and A. Cheetham (Res. Soc. Proc. 346, 1994), pp. 1–12.

  29. C. Sanchez and F. Ribot, New J. Chem. 18, 1007 (1994).

    Google Scholar 

  30. M.R. Shahriari, M.T. Murtagh, and H.C. Kwon, SPIE 3105, 40 (1997).

    Google Scholar 

  31. Y. Chujo and T. Saegusa, Adv. Polym. Sci. 100, 11 (1992).

    Google Scholar 

  32. K. Matsui, M. Tominaga, Y. Arai, H. Satoh, and M. Kyoto, J. Non-Cryst. Solids 169, 295 (1994).

    Google Scholar 

  33. A. Morikawa, Y. Iyoku, M. Kakimoto, and Y. Imai, J. Mater. Chem. 2, 679 (1992).

    Google Scholar 

  34. B. Wang, G.L. Wilkes, C.D. Smith, and J.E. McGrath, Polym. Commun. 32, 400 (1991).

    Google Scholar 

  35. B.M. Novak, Adv. Mater. 5, 422 (1993).

    Google Scholar 

  36. U. Schubert, N. Hüsing, and A. Lorenz, Chem. Mater. 7, 2010 (1995).

    Google Scholar 

  37. S. Shtelzer, S. Rappoport, D. Avnir, M. Ottolenghi, and S. Braun, Biotech. Appl. Biochem. 15, 227 (1992).

    Google Scholar 

  38. D. Basmadjian, G.N. Fulford, B.I. Parsons, and D.S. Montgomery, J. Catal. 1, 547 (1962).

    Google Scholar 

  39. K. Maeda, F. Mizukami, M. Watanabe, S. Niwa, M. Toba, and K. Shimizu, Chem. & Ind. 4, 807 (1989).

    Google Scholar 

  40. Y. Hu, Y.J. Chung, and J.D. Mackenzie, J. Mater. Sci. 28, 6549 (1993).

    Google Scholar 

  41. M. Nandi, J.A. Conklin, L. Salvati, and A. Sen, Chem. Mater. 3, 201 (1991).

    Google Scholar 

  42. B.M. Novak and C. Davies, Macromolecules 24, 5481 (1991).

    Google Scholar 

  43. J.C. Yang and Y.G. Shul, Catal. Lett. 36, 41 (1996).

    Google Scholar 

  44. G.A. Baker, J.D. Jordan, and F.V. Bright, J. Sol-Gel Sci. Tech. 11, 43 (1998).

    Google Scholar 

  45. H.J. Watzke and C. Dieschbourg, Advances in Colloid and Interface Science 50, 1 (1994).

    Google Scholar 

  46. P.N. Prasad, F.V. Bright, U. Narang, R. Wang, R.A. Dunbar, J.D. Jordan, and R. Gvishi, in Hybrid Organic-Inorganic Composites, edited by J.E. Mark, P.A. Bianconi, and C.Y-C. Lee, (ACS Symposium Series, 1995), Chap. 25, Vol. 585.

  47. J.D. Jordan, R.A. Dunbar, D.J. Hook, H. Zhuang, J.A. Gardella, L.A. Colön, and F.V. Bright, Chem. Mater. 10, 1041 (1998).

    Google Scholar 

  48. K.A. Smith, Macromolecules 20, 2514 (1987).

    Google Scholar 

  49. R.C. Chambers, W.E. Jones, Y. Haruvy, S.E. Webber, and M.A. Fox, Chem. Mater. 5, 1481 (1993).

    Google Scholar 

  50. R.C. Chambers, Y. Haruvy, and M.A. Fox, Chem. Mater. 6, 1351 (1994).

    Google Scholar 

  51. M. Krihak and M.R. Shahriari, Opt. Mater. 5, 301 (1996).

    Google Scholar 

  52. C.A. Fyfe and P.P. Aroca, J. Phys. Chem. B 101, 9504 (1997).

    Google Scholar 

  53. A.B. Wojcik and L.C. Klein, J. Sol-Gel Sci. Tech. 5, 77 (1995).

    Google Scholar 

  54. D.L. Ou and A.B. Seddon, J. Non-Cryst. Solids 210, 187 (1997).

    Google Scholar 

  55. H.Y. Liu, S.C. Switalski, B.K. Coltrain, and P.B. Merkel, Appl. Spectrosc. 46, 1266 (1992).

    Google Scholar 

  56. D.A. Loy, G.M. Jamison, B.M. Baugher, S.A. Myers, R.A. Assink, and K.J. Shea, Chem. Mater. 8, 656 (1996).

    Google Scholar 

  57. A.L. Wong, M.L. Hunnicutt, and J.M. Harris, Anal. Chem. 63, 1076, (1991).

    Google Scholar 

  58. D.S. Karpovich and G.J. Blanchard, J. Phys. Chem. 99, 3951, (1995).

    Google Scholar 

  59. D.C. Dong and M. Winnik, Photochem. Photobiol. 35, 17 (1982).

    Google Scholar 

  60. U. Narang, R. Wang, P.N. Prasad, and F.V. Bright, J. Phys. Chem. 98, 17 (1994).

    Google Scholar 

  61. A. Rembaum and H. Noguchi, Macromolecules 5, 261 (1972).

    Google Scholar 

  62. R. Wang, S. Sun, E.J. Bekos, and F.V. Bright, Anal. Chem. 67, 149 (1995).

    PubMed  Google Scholar 

  63. J.M. Beecham and E. Gratton, Proc. SPIE 70, 909 (1988).

    Google Scholar 

  64. Topics in Fluorescence Spectroscopy, edited by J.R. Lakowicz (Plenum Press, NewYork, 1991), chap. 5, Vol. 1.

    Google Scholar 

  65. F.V. Bright, Appl. Spectrosc. 49, 14A (1995).

    Google Scholar 

  66. E. Blatt, A. Launikonis, A.W.-H. Mau, and W.H.F. Sasse, Aust. J. Chem. 40, 1 (1987).

    Google Scholar 

  67. T. Murakata, S. Sato, T. Ohgawara, T. Watanabe, and T. Suzuki, J. Mater. Sci. 27, 1567 (1992).

    Google Scholar 

  68. Q. Deng, R.B. Moore, and K.A. Mauritz, Chem. Mater. 7, 2259 (1995).

    Google Scholar 

  69. Q. Deng, Y. Hu, R.B. Moore, C.L. McCormick, and K.A. Mauritz, Chem. Mater. 9, 36 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.V. Bright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, G., Pandey, S., Maziarz, E. et al. Toward Tailored Xerogel Composites: Local Dipolarity and Nanosecond Dynamics within Binary Composites Derived from Tetraethylorthosilane and ORMOSILs, Oligomers or Surfactants. Journal of Sol-Gel Science and Technology 15, 37–48 (1999). https://doi.org/10.1023/A:1008708913243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008708913243

Navigation