European Journal of Plant Pathology

, Volume 106, Issue 7, pp 617–622 | Cite as

UV irradiation Alters the Levels of Flavonoids Involved in the Defence Mechanism of Citrus aurantium Fruits against Penicillium digitatum

  • M.C. Arcas
  • J.M. Botía
  • A.M. Ortuño
  • J.A. Del Río


The effect of UV irradiation on the levels of the flavanone, naringin, and the polymethoxyflavone, tangeretin, in the peel of Citrus aurantium fruits is described, as changes in the synthesis and/or accumulation of these compounds after infection with Penicillium digitatum. The growth of P. digitatum on previously irradiated fruit was reduced by up to 45%. Changes in flavonoid levels were detected, associated with inhibition of fungus growth, the naringin content falling by 69% and tangeretin levels increasing by 70%. The possible participation of naringin and tangeretin in the defence mechanism of this Citrus species is discussed.

Citrus flavanone flavone fungitoxins naringin tangeretin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angioni A, Cabras P, D'Hallewin G, Pirisi FM, Reneiro F and Schirras M (1998) Synthesis and inhibitory activity of 7-geranoxycoumarins against Penicillium species in Citrus fruit. Phytochemistry 47: 1521-1525CrossRefGoogle Scholar
  2. Beggs CJ, Kuhn K, Böcker R and Wellmann E (1987) Phytochrome-induced flavonoids biosynthesis in mustard (Sinapis alba L.) cotyledons: Enzymic control and differential regulation of anthocyanin and quercetin formation. Planta 172: 121-126CrossRefGoogle Scholar
  3. Benavente-García O, Castillo J and Del Río JA (1993) Changes in neodiosmin levels during the development of C. aurantium leaves and fruits. Postulation of a neodiosmin biosynthetic pathway. J Agric Food Chem 41: 1916-1919Google Scholar
  4. Ben-Aziz A (1967) Nobiletin is main fungistat in tangerines resistant to Mal Secco. Science 155: 1026-1027Google Scholar
  5. Ben-Yehoshua S, Rodov V, Kim JJ and Carmeli S (1992) Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. J Agric Food Chem 40: 1217-1221Google Scholar
  6. Ben-Yehoshua S, Goldschmidt EE and Bar-Joseph M (1994) Citrus Fruits. Encyclopedia of Agricultural Science, Vol. 1 (pp. 357-378) Academic Press, Inc., New YorkGoogle Scholar
  7. Ben-Yehoshua S, Rodov V, Fang DQ and Kim JJ (1995) Preformed antifungal compounds of Citrus fruit: Effect of postharvest treatments with heat and growth regulators. J Agric Food Chem 43: 1062-1066Google Scholar
  8. Buffar D, Esnault, R and Kondorosi A (1996) Role of plant defence in alfalfa during symbiosis.World J Microbiol Biotechnol 12: 175-188CrossRefGoogle Scholar
  9. Cabras P, Schirra M, Pirisi FM, Garau VL and Angioni A (1999) Factors affecting imazalil and thiabendazole uptake and persistence in citrus fruits following dip treatments. J Agric Food Chem 47: 3352-3354CrossRefPubMedGoogle Scholar
  10. Castillo J, Benavente-García O and Del Río JA (1992) Naringin and neohesperidin levels during development of leaves, flower, buds, and fruits of Citrus aurantium. Plant Physiol 99: 67-73Google Scholar
  11. Castillo J, Benavente-García O and Del Río JA (1993) Hesperetin 7-O-glucoside and prunin in Citrus species (C. aurantium and C. paridisi). A study of their quantitative distribution in immature fruits and as immediate precursors of neohesperidin and naringin in Citrus aurantium. J Agric Food Chem 41: 1920-1924Google Scholar
  12. Castillo J, Benavente-García O and Del Río JA (1994) Study and optimization of citrus flavanone and flavones elucidation by reverse phase HPLC with several mobile phases: influence of the structural characteristics. J Liquid Chromatography 17: 1497-1523Google Scholar
  13. Challice SJ and Willians AH (1970) Comparative biochemical study of phenolase specifity in Maluas, Pyrus and other plants. Phytochemistry 9: 1261-1269Google Scholar
  14. Del Río JA, Fuster MD, Sabater F, Porras I, García-Lidón A and Ortuño A (1995) Effect of benzylaminopurine on the flavanones hesperidin, hesperetin 7-O-glucoside, and prunin in tangelo Nova fruits. J Agric Food Chem 43: 2030-2034Google Scholar
  15. Del Río JA, Fuster MD, Sabater F, Porras I, García-Lidón A and Ortuño A (1997) Selection of Citrus varieties highly productive for the neohesperidin dihydrochalcone precursor. Food Chem 59: 433-437Google Scholar
  16. Del Río JA, Arcas MC, Benavente-García O, Sabater F and Ortuño A (1998a) Changes of polymethoxylated flavones levels during development of Citrus aurantium (cv. Sevillano) fruits. Planta medica 64: 575-576Google Scholar
  17. Del Río JA, Arcas MC, Benavente-García O and Ortuño A (1998b) Citrus polymethoxylated flavones can confer resistance against Phytophthora citrophthora,Penicillium digitatum and Geotrichum species. J Agric Food Chem 46: 4423-4428Google Scholar
  18. De Swardt GH, Maxie EC and Singleton VL (1967) Some relations between enzyme activities and phenolics components in banana tissue. S Afr Agric Sci 10: 641-650Google Scholar
  19. Dixon RA and Paiva NL (1995) Stress-induced phenylpropanoid metabolism. The Plant Cell 7: 1085-1097PubMedGoogle Scholar
  20. Friar PMK and Reynolds SL (1997) The effect of home processing on postharvest fungicide residues in citrus fruit: residues of imazalil, 2-phenylphenol and thiabendazole in home-made marmalade, prepared from Late Valencia oranges. Food Addit Contam 11: 57-70Google Scholar
  21. Gabor M (1986) Anti-inflammatory and anti-allergic properties of flavonoids. In: Cidy V, Middleton E, Harborne JB and Beretz A (eds.) Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity relationships. Vol. 213 (pp. 471-480) Alan R. Liss Inc., New YorkGoogle Scholar
  22. Galati EM, Monforte MT, Kirjavainen S, Forestieri A, Trovato A and Tripodo MM (1994) Biologycal effects of hesperidin, a citrus flavonoid (Note I): Antinflammatory and analgesic activity. Farmaco 40: 709-712PubMedGoogle Scholar
  23. García-Puig D, Pérez ML, Fuster MD, Ortuño A, Sabater F, Porras I, García-Lidón A and Del Río JA (1995) Modification by ethylene of the secondary metabolites naringin, narirutin and nootkatone, in grapefruit. Planta Medica 61: 283-285Google Scholar
  24. Holmes GJ and Eckert JW (1995) Relative fitness of imazalilresistant and sensitive biotypes of Penicillium digitatum. Plant Dis 79: 1068-1073Google Scholar
  25. Huet R (1982) Constituents of Citrus fruits with pharmacodynamic effects: Citroflavonoids. Fruits 37: 267-271Google Scholar
  26. Jacobs M and Rubery PM (1988) Naturally occurring auxin transport regulators. Science 241: 346-349Google Scholar
  27. Kamiya S, Esaki S and Konishi F (1979) Flavonoids in citrus hybrids. Agric Biol Chem 43: 1529-1536Google Scholar
  28. Kanes K, Tisserat B, Berhow M and Vandercook C (1992) Phenolic composition of various tissues of rutaceae species. Phytochemistry 32: 967-974Google Scholar
  29. Lois R (1994) Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L. I. Mechanisms of UV-resistance in Arabidopsis. Planta 194: 498-503Google Scholar
  30. Lois R and Buchanan BB (1994) Severe sensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation. II. Mechanisms of UV-resistance in Arabidopsis. Planta 194: 504-509Google Scholar
  31. Machida K and Osawa K (1989) On the flavonoid constituents from the peels of Citrus hassaku Hort. ex Tanaka. Chem Pharm Bull 37: 1092-1094Google Scholar
  32. Manach C, Regerat F, Texier O, Agullo G, Demigne C and Remesy C (1996) Bioavailability, metabolism and physiological impact of 4-oxo-flavonoids. Nutr Res 16: 517-544Google Scholar
  33. Mizuno M, Iinuma M, Ohara M, Tanaka T and Iwamasa M (1991) Chemotaxonomy on the Genus Citrus based on polymethoxyflavones. Chem Pharm Bull 39: 945-949Google Scholar
  34. Mouly P, Gaydou EM, Auffray A (1998) Simultaneous separation of flavanone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography. J Chromatogr A800: 171-179Google Scholar
  35. Ooghe WC, Ooghe SJ, Detavernier CM and Huyghebaert A (1994) Characterization of orange juice (Citrus sinensis) by polymethoxylated flavones. J Agric Food Chem 42: 2191-2195Google Scholar
  36. Ortuño A, García-Puig D, Fuster MD, Pérez ML, Sabater F, Porras I, García-Lidón A and Del Río JA (1995) Flavanone and nootkatone levels in different varieties of grapefruits and pummelo. J Agric Food Chem 43: 1-5Google Scholar
  37. Ortuño A, Reynaldo I, Fuster MD, Botía JM, García-Puig D, Sabater F, García-Lidón A, Porras I and Del Río JA (1997a) Citrus cultivars with high flavonoid contents in the fruits. Sci Hortic 68: 233-236Google Scholar
  38. Ortuño A, Botía JM, Fuster MD, Porras I, García-Lidón A and Del Río JA (1997b) Effect of Scoparone (6,7-dimethoxycoumarin) biosynthesis on the resistance on tangelo Nova, Citrus paradisi, and C. aurantium fruits againts Phytophthora citrophthora. J Agric Food Chem 45: 2740-2743Google Scholar
  39. Ortuño AM, Arcas MC, Benavente-García O and Del Río JA (1999) Evolution of polymethoxy flavones during development of tangelo Nova fruits. Food Chem 66: 217-220Google Scholar
  40. Pradhan JP and Basu PK (1981) Effect of quercetin on germination of seed in Tephrosia vogelii hook, with special interest on IAA oxidase activity. Ind J Experim Biol 19: 707-709Google Scholar
  41. Robbins RC (1976) Regulatory action of phenylbenzo-γ-pyrone (PBP) derivates on blood constituents affecting rheology on patients with coronary heart disease. Int J Vit Nutr Res 46: 338–347Google Scholar
  42. Shimoi K, Masuda S, Furogori M, Esaki S and Kinae N (1994) Radioprotective affect of antioxidative flavonoids in γ-ray irradiated mice. Carcinogenesis 15: 669–2672Google Scholar
  43. Stapleton AE and Walbot V (1994) Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage Plant Physiol 105: 881–889CrossRefPubMedGoogle Scholar
  44. Szent-Gyorgyi A (1938) Methoden zur Herstellung von citrin. Physiol Chem 255: 126-131Google Scholar
  45. Vierheilig H, Bago B, Albrecht C, Poulin MJ and Piché Y (1998) Flavonoids and Arbuscular-Mycorrhizal fungi. In: Manthey JA and Buslig BS (eds.) Flavonoids in the Living System. Vol. 439 (pp. 9-33) Plenum Press, New YorkGoogle Scholar
  46. Weidenbörner M, Hindorf H and Weltzien HC (1992) Aneffective treatment of legume seeds with flavonoids and isoflavonoids against storage fungi of the genus Aspergillus. Seed Sci Technol 20: 447-463Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • M.C. Arcas
    • 1
  • J.M. Botía
    • 1
  • A.M. Ortuño
    • 1
  • J.A. Del Río
    • 2
  1. 1.Departamento de Fisiología Vegetal (Biología Vegetal), Facultad de BiologíaUniversidad de MurciaMurciaSpain
  2. 2.Departamento de Fisiología Vegetal (Biología Vegetal), Facultad de BiologíaUniversidad de MurciaMurciaSpain

Personalised recommendations