Skip to main content
Log in

Amino-Modified Silicate Xerogels Complexed with Cu(II) as Catalyst Precursors. Coordination State and Thermal Decomposition

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The sol-gel process is a useful method for preparing two series of organically and co-ordinately modified xerogels of the types [CuN n N 5−n ·5xSiO4/2 (n < 4) and [Cu(N−N)n]·(N−N)2−n ·2x SiO4/2(n ≤ 2), where N = NH2(CH2)3 SiO3/2, N−N = NH2(CH2)2NH·(CH2)3SiO3/2 and x = [SiO4/2]/[N] or [SiO4/2]/[N−N]. The amino groups in the materials are coordinately active and participate partly in the coordination sphere of Cu(II) ions. The composition of the coordination sphere can be varied with the SiO4/2 content and also as a result of the thermal decomposition of the organic residues at higher temperatures.

Because the xerogel materials are considered to be catalyst precursors, this study is focused on their coordination and thermal properties. The prepared xerogels, such as silica, aminated silicates with N and N−N, as well as those entities complexed with Cu(II), were characterised by FT-IR spectroscopy. During gelation and thermal decomposition the materials were analysed by electron paramagnetic resonance (EPR) spectroscopy. The xerogels were additionally studied by UV-Vis absorption spectroscopy. The gaseous products of the thermal decomposition of these materials in an Ar atmosphere were investigated by the use of FT-IR spectroscopy coupled with TG and DTG thermal analysis. These data were complemented by temperature-programmed decomposition (TPDec) in a 2% O2 + 98% Ar stream coupled with quadrupole mass spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.R. Hartley, Supported Metal Complexes (Reidel, Dordrecht, 1985), p. 68.

    Google Scholar 

  2. C.J. Brinker and G.W. Scherer, Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing, (Academic Press, Boston, 1990).

    Google Scholar 

  3. H. Schmidt and B. Seiferling, in Better Ceramics Through Chemistry II, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc., Pittsburgh, PA, 1986), p. 739.

    Google Scholar 

  4. A.M. Kłonkowski and C.W. Schläpfer, J. Non-Cryst. Solids 129, 101 (1991).

    Google Scholar 

  5. A.M. Kłonkowski and C.W. Schläpfer, J. Non-Cryst. Solids 149, 189 (1992).

    Google Scholar 

  6. A.M. Kłonkowski, K. Koehler, and C.W. Schlaepfer, J. Mater Chem. 3, 105 (1993).

    Google Scholar 

  7. A.M. Kłonkowski, T. Widernik, and B. Grobelna, Molec. Enging 5, 381 (1995).

    Google Scholar 

  8. A.M. Kłonkowski, K. Koehler, T. Widernik, and B. Grobelna, J. Mater. Chem. 6, 579 (1996).

    Google Scholar 

  9. C. Furlani, Coord. Chem. Rev. 3, 141 (1968).

    Google Scholar 

  10. I.M. Campbell, Catalysis at Surfaces (Chapman and Hall, London, 1988), p. 56.

    Google Scholar 

  11. D. Kivelson and R. Neiman, J. Chem. Phys. 35, 149 (1961).

    Google Scholar 

  12. A.H. Maki and B.R. McGarvey, J. Chem. Phys. 29, 31 (1958).

    Google Scholar 

  13. F.K. Kneubühl, J. Chem. Phys. 33, 1074 (1960).

    Google Scholar 

  14. G. Orcel, J. Phalippou, and L.L. Hench, J. Non-Cryst. Solids 88, 114 (1986).

    Google Scholar 

  15. K. Kobayashi, Glass Technol. 34, 120 (1993).

    Google Scholar 

  16. I. Shimizu, H. Okabayashi, K. Taga, E. Nishio, and C. O'Connor, J. Vibr. Spectrosc. 14, 113 (1997).

    Google Scholar 

  17. K.C. Vracken, P. Van der Voort, J. Gillis-D'Hamers, and E.F. Vansant, J. Chem. Soc., Faraday Trans. 88, 3197 (1992).

    Google Scholar 

  18. A. Piers and C.H. Rochester, J. Chem. Soc., Faraday Trans. 91, 359 (1995).

    Google Scholar 

  19. M. Schraml-Marth, K.L. Walther, A. Wokau, B.E. Handy, and A. Baiker, J. Non-Cryst. Solids 141, 93 (1992).

    Google Scholar 

  20. E.I. Kamitsos, A.P. Patsis, and G. Kordas,Phys. Rev. B 48, 12499 (1993).

    Google Scholar 

  21. M. Handke and W. Mozgawa, Vibr. Spectrosc. 5, 75 (1993).

    Google Scholar 

  22. D.L. Wood and E.M. Rabinovich, Appl. Spectrosc. 43, 263 (1989).

    Google Scholar 

  23. H. Yashino, K. Kamiya, and H. Nasu, J. Non-Cryst. Solids 126, 68 (1990).

    Google Scholar 

  24. D. Niznansky and J.L. Rehspringer, J. Non-Cryst. Solids 180, 191 (1995).

    Google Scholar 

  25. J.M. Procter, B.J. Hathaway, and P. Nichols, J. Chem. Soc. A 1678 (1966).

  26. B.J. Hathaway and D.E. Billing, Coord. Chem. Rev. 5, 143 (1970).

    Google Scholar 

  27. J. Wong and C.A. Angell, Glass Structure by Spectroscopy (Dekker, New York, 1976), ch. 6 and 9.

    Google Scholar 

  28. D.C. Munro, Chem. Br. 13, 100 (1977).

    Google Scholar 

  29. G. Schwarzenbach, Helv. Chim. Acta 35, 2344 (1952).

    Google Scholar 

  30. B.J. Hathaway, in Comprehensive Coordination Chemistry, edited by G. Wilkinson (Pergamon Press, Oxford 1987) vol. 5, pp. 667 ff and 730.

    Google Scholar 

  31. A.A.G. Tomlinson and B.J. Hathaway, J. Chem. Soc. A 1905 (1968).

  32. N.N. Greenwood and A. Earnshaw, Chemistry of the Elements (Pergamon Press, Oxford, 1985), p. 1096.

    Google Scholar 

  33. D.G. Kurth and T. Bein, Angew. Chem. Int. Ed. Engl. 31, 336 (1992).

    Google Scholar 

  34. A.M. Kłonkowski, B. Grobelna, A. Jankowska-Frydel, T. Widernik, and W. Mozgawa, Langmuir 15, 5814 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kłonkowski, A.M., Widernik, T., Grobelna, B. et al. Amino-Modified Silicate Xerogels Complexed with Cu(II) as Catalyst Precursors. Coordination State and Thermal Decomposition. Journal of Sol-Gel Science and Technology 20, 161–180 (2001). https://doi.org/10.1023/A:1008703623418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008703623418

Navigation