Skip to main content
Log in

A Wavelet-Based Nonparametric Estimator ofthe Variance Function

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

A new wavelet-based nonparametric estimator is introduced in an effort toapproximate variance functions. The new estimator possesses some superiorqualities that are illustrated through its actual performance in somesimulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoniadis, A. and Lavergne, C. (1995). Variance function estimation in regression by wavelet methods. In A. Antoniadis and G. Oppenheim (eds.), Wavelets and Statistics, pp. 31-42.

  • Bunke, O. (1986). Assessing the performance of regression estimators and models under nonstandard conditions. Seminarbericht Nr. 89, Humboldt University, Dept. of Math., Berlin, pp. 65-102.

    Google Scholar 

  • Carroll, R.J. (1982). Adapting for heteroscedasticity in linear models. Annals of Statistics, 10, 1224-1233.

    Google Scholar 

  • Carroll, R.J. Ruppert, D. and Stefanski, L.A. (1986). Adapting for heteroscedasticity in regression models. Research Report 1702, University of North Carolina.

  • Donoho, D.L. and Johnstone, I.M. (1994). Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81, 425-455.

    Google Scholar 

  • Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987-1008.

    Google Scholar 

  • Gasser, T., Muller, H.G. and Mammitzsch, V. (1985). Kernels for nonparametric curve estimation. Journal of the Royal Statistical Society, B, 47, 238-252.

    Google Scholar 

  • Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika, 73, 625-633.

    Google Scholar 

  • Hall, P. (1981). On trigonometric series estimates of densities. The Annals of Statistics, 9, 683-685.

    Google Scholar 

  • Hall, P. and Marron, J.S. (1990). On variance estimation in nonparametric regression. Biometrika, 77, 415-419.

    Google Scholar 

  • Hall, P., Kay, J.W. and Titterington, D.M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika, 77, 521-528.

    Google Scholar 

  • Jones, M.C., Marron, J.S. and Sheather, S.J. (1996). Progress in data-based bandwidth selection for kernel density estimation. Computational Statistics, 11, 337-381.

    Google Scholar 

  • Müller, H.G. and Stadtmüller, U. (1987). Heteroscedasticity in regression. The Annals of Statistics, 15, 610-625.

    Google Scholar 

  • Neumann, M. (1994). Fully data-driven nonparametric variance estimation. Statistics, 25, 189-210.

    Google Scholar 

  • Robinson, P.M. (1983). Nonparametric estimators for time series. Journal of Time Series Analysis, 4, 185-208.

    Google Scholar 

  • Robinson, P.M. (1987). Asymptotically efficient estimation in the presence of heteroscedasticity of unknown form. Econometrica, 55, 857-891.

    Google Scholar 

  • Rose, R.L. (1978). Nonparametric estimation of weights in least-squares regression analysis. Doctoral dissertation, Univ. of California at Davis.

    Google Scholar 

  • Singh, R.S. and Tracy, D.S. (1977). Strongly consistent estimators of kth order regression curves and rates of convergence. Z. Wahrsch. Verw. Gebiete, 40, 339-348.

    Google Scholar 

  • Vinod, H.D. and Ullah, A. (1981). Recent Advances in Regression Methods. Marcel Dekker, New York, pp. 113-114.

    Google Scholar 

  • Wang, M.P. and Jones, M.C. (1995). Kernel Smoothing. Chapman and Hall, p. 34.

  • Wahba, G. (1975a). Optimal convergence properties of variable knot, kernel, and orthogonal series methods for density estimation. The Annals of Statistics, 3, 15-29.

    Google Scholar 

  • Wahba, g. (1975b). Interpolating spline methods for density estimation I. equispaced knots. The Annals of Statistics, 3, 30-48.

    Google Scholar 

  • Wahba, G. (1981). Data-based optimal smoothing of orthogonal series density estimates. The Annals of Statistics, 9, 146-156.

    Google Scholar 

  • Walter, G.G. (1994). Wavelets and Other Orthogonal Systems with Applications. CRC Press Inc.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Z., Wang, X. A Wavelet-Based Nonparametric Estimator ofthe Variance Function. Computational Economics 15, 79–87 (2000). https://doi.org/10.1023/A:1008695011608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008695011608

Navigation