Skip to main content
Log in

The Uses of Polynuclear Metal Complexes to Develop Designed Dispersions of Supported Metal Oxides: Part I. Synthesis and Characterization

  • Published:
Interface Science

Abstract

One way to design a catalyst begins with a consideration of thereaction mechanism to the desired product so that only the chemistryrequired of that mechanism will be present on the surface. The reactionmechanism will suggest the structure(s) to be developed on the surface whichshould be stabilized against changes during operation. We believe that thisideal may be approached by decorating surfaces or porous powders with amonolayer of metal complexes having the desired structures. These complexesmay be partially decomposed to develop a high dispersion of the supportedmetal oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu.I. Yermakov, B.N. Kuznetsov, and V.A. Zakharov, Catalysis by Supported Complexes(Elsevier, Amsterdam, 1981).

    Google Scholar 

  2. Uses of Metal Complexes in the Preparation of Catalysts, Proceedings of the Post-Congress Symposium (Quebec, 1988); M.G. White, Uses of Polynuclear Metal Complexes to Develop Designed Dispersions of Supported Metal Complexes, and P. Van Der Voort, with E.F. Vansant, The Creation of Supported VO xin Catatalyst on Silica and Alumina by Adsorption of Vacetylacetonate Complexes, 14th European Chemistry at Interfaces Conference (Antwerp, Belgium, 1996).

  3. A. Brenner, D.A. Hucul, and S. Hardwick, Inorg. Chem. 18, 1478 (1979).

    Google Scholar 

  4. D. Commereuc, Y. Chauvin, F. Hugues, J.M. Basset, and D. Olivier, J. Chem. Soc. Chem. Commun. 154(1980).

  5. H.H. Lamb and B.C. Gates, J. Amer. Chem. Soc. 108, 81 (1986).

    Google Scholar 

  6. M. Deeba, J.P. Scott, R. Barth, and B.C. Gates, J. Catal. 71, 373 (1981); Lamb, H. Henry, Catalysis Today 18(1), 1–20.

    Google Scholar 

  7. J.M. Basset, B.C. Gates, J.P. Candy, A. Choplin, M. Leconte, F. Quignard, and C. Santini, Surface Organometallic Chemistry: Molecular Approaches to Surface Catalysis(Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988).

    Google Scholar 

  8. R. Psaro and R. Ugo, in Metal Clusters in Catalysis, edited by B.C. Cates, L. Guzci, and H. Knozinger (Elsevier, Amsterdam, 1986), p. 427.

    Google Scholar 

  9. Kawi, Sibudjing, and B.C. Gates, Clusters in Cages, Clusters and Colloids, from Theory to Application, edited by G. Schmid, VCH, Weinheim (New York, Basel, Cambridge, Tokyo, 1994).

  10. B.C. Gates, Supported Metal Clusters: Synthesis, Structure, and Catalysis, Chem. Rev. 95, 511–522 (1995).

    Google Scholar 

  11. Y. Iwasawa, Catalysis Today 18(1), 21–72 (1993).

    Google Scholar 

  12. J.W. McMillan, H.E. Fischer, and J. Schwartz, J. Am. Chem. Soc. 113, 4014–4016 (1991).

    Google Scholar 

  13. K.H. Babb and M.G. White, J. Catal. 98, 343 (1986).

    Google Scholar 

  14. R.K. Beckler, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA (1987).

  15. R.K. Beckler and M.G. White, J. Catal. 102, 252 (1986).

    Google Scholar 

  16. R.K. Beckler, and M.G. White, Lang. 3, 1074 (1987).

    Google Scholar 

  17. R.K. Beckler and M.G. White, J. Catal. 109, 25 (1988).

    Google Scholar 

  18. R.K. Beckler and M.G. White, J. Catal. 110, 364 (1988).

    Google Scholar 

  19. R.K. Beckler and M.G. White, J. Catal. 112, 157 (1988).

    Google Scholar 

  20. J.C. Kenvin and M.G. White, Preparation and Characterization of Supported Mononuclear Metal Complexes as Model Complexes, 198th ACS National Meeting (Miami Beach, FL, 1989).

  21. J.C. Kenvin, M.G. White, and M.B. Mitchell, Hydrogen Bonding of Mononuclear Metal Complexes to Cab-O-Sil, 200th ACS National Meeting (Washington, D.C., 1990).

  22. J. van Ommen, J.R.H. Ross, and P.J. Gellings, Appl. Catal. 8, (1983).

  23. M.A. Kohler, J.C. Lee, D.L. Trimm, N.W. Cant, and M.S. Wainwright, Appl. Catal. 32, 309 (1987).

    Google Scholar 

  24. J.C. Kenvin, M.G. White, and M.B. Mitchell, Lang. 7, 1198 (1991).

    Google Scholar 

  25. J.C. Kenvin and M.G. White, J. Catal. 130, 447 (1991).

    Google Scholar 

  26. M.G. White, D. Bruce, H. Choksi, and J.A. Bertrand, The Catalytic Properties of Supported CuO Catalysts Prepared from Mononuclear, Dinuclear, and Trinuclear Cu Complexes, A.I.Ch.E. Annual Meeting, Paper 99 Ci (1991).

  27. J.A. Bertrand, D.B. Bruce, and M.G. White, Supported CuO Catalysts Prepared from Polynuclear Metal Complexes, ACS Preprints of the Washington D.C. Meeting of the ACS (1992).

  28. J. Aaron Bertrand and Mark G. White, The Effects of Molecular Structure upon Complex-Support Interactions, 7th ICSCS, Compiegne, France, Symposium A4: Chemical Processes on Solid Surfaces (1991).

  29. A.J. Van Roosmalen and J.C. Mol, J. Phys. Chem. 82, 2748 (1978).

    Google Scholar 

  30. W. Hertl and M.L. Hair, J. Phys. Chem. 75, 2181 (1971).

    Google Scholar 

  31. D.J. Rosenthal, M.G. White, and G.D. Parks, A.I.Ch.E. Jour. 33(2), 336 (1987).

    Google Scholar 

  32. J. Kunawicz, P. Jones, and J.A. Hockey, Trans. Faraday Soc. 67, 848 (1971); S. Haukka, E.-L. Lakomaa, and A. Root, J. Phys. Chem. 97, 5085 (1993).

    Google Scholar 

  33. A.A. Chuiko, V.A. Tertykh, V.A. Khranovskii, Yu. P. Egorov, and L.M. Roev, Teor. Eksp. Khim 2, 247 (1966); T. Suntola, Mater. Sci. Rep. 4, 261 (1989); P.Van DerVoort, K.C. Vrancken, and E.F. Vansant, J. Chem. Soc. Faraday Trans. 91(2) 353–357 (1995).

    Google Scholar 

  34. R. Drago et al., U.S. Patent No. 4,719,190, Hydrocarbon Conversion and Polymerization Catalyst and Method of Making and Using the Same.

  35. E. Kytokivi, E.L. Lakomaa, and A. Root, Langmuir 12(18), 4395.

  36. J.B. Peri, J. Phys. Chem. 69, 220 (1965).

    Google Scholar 

  37. H. Knozinger and P. Ratnasamy, Catal. Rev.—Sci. Eng. 17(1), 31 (1978).

    Google Scholar 

  38. J.P. Fackler, Prog. Inorg. Chem. 7, 361 (1966).

    Google Scholar 

  39. M.F. Hawthorne and M. Reintzes, J. Am. Chem. Soc. 86, 5016 (1964).

    Google Scholar 

  40. R.C. Menzies, J. Chem. Soc. 565 (1928); R.C. Menzies and E.R. Wiltshire, ibid. 21 (1933); G.E. Coates, Organometallic-Compounds(Wiley, New York, 1960), p. 150; G.E. Coates and R.G. Hayter, J. Chem. Soc. 2519 (1958).

  41. K. Nakamoto and A.E. Martell, J. Chem. Phys. 32, 588 (1960).

    Google Scholar 

  42. M. Mikami, I. Nakagawa, and T. Shimanouchi, Spectrochim. Acta. 23A, 1037 (1967).

    Google Scholar 

  43. H. Junge and H. Musso, Spectrochim. Acta. 24A, 1219 (1968).

    Google Scholar 

  44. I. Jonas, B. Norden, Spectrochim. Acta. 32A, 427 (1976).

    Google Scholar 

  45. B. Vlckova, B. Strauch, and M. Horak, Coll. Czech. Chem. Commun. 50, 306 (1985).

    Google Scholar 

  46. F.E. Porbeni, M.S. Thesis, Clark Atlanta University (1997).

  47. R.D. Kaplan, Ph.D. Thesis, Georgia Institute of Technology (1965); Marabella, Ph.D. Thesis, Georgia Institute of Technology (1978); J.A. Bertrand and J.A. Kelley, Inorg. Chim. Acta. 4, 203 (1970).

  48. K.E. Lawson, Spectrochim. Acta. 17, 248 (1961).

    Google Scholar 

  49. J.C. Kenvin, Ph.D. Thesis, Georgia Institute of Technology (1991).

  50. J.C. Kenvin, M.G. White, and M.B. Mitchell, Langmuir. 7, 1198 (1991).

    Google Scholar 

  51. R.G. Pearson, H.B. Gray, and F. Basolo, J. Am. Chem. Soc. 82, 787 (1960), F. Basolo, H.B. Gray, and R.G. Pearson, ibid. 82, 4200 (1960); H.B. Gary and R.J. Olcott, Inorg. Chem. 1, 481 (1961).

    Google Scholar 

  52. R.G. Pearson and D.A. Johnson, J. Am. Chem. Soc. 86, 3983 (1964).

    Google Scholar 

  53. M. Che, Concepts and Relevance to Catalysis Phenomena, Proc. 10th ICC Budapest (Elsevier, Amsterdam, 1993), Vol. 75A, pp. 31–68 (1993); T. Setoyama and Michel Che, Study of the Grafting Mechanism of Nickel Diamine Complexes to Silica, private communication (1994); C. Lepetit and M. Che, J. Mol. Catal. 100, 147–150 (1995).

    Google Scholar 

  54. J.A. Bertrand, D.A. Bruce, and M.G. White, The Effects of Molecular Structure upon Complex-Support Interactions, A.I.Ch.E. Journal 39(12), 1966 (1993).

    Google Scholar 

  55. H.C. Choksi, A. Zippert, P. Berdahl, J.A. Bertrand, D.L. Perry, M.B. Mitchell, and M.G. White, J. of Molecular Catal. A: Chemical 97, 85 (1995).

    Google Scholar 

  56. P. Van Der Voort, K. Possemiers, and E.F. Vansant, J. Chem. Soc., Faraday Trans. 92(5), 843–848 (1996).

    Google Scholar 

  57. S.N.R. Rao, E. Waddell, M.B. Mitchell, and M.G. White, J. Catal. 163, 176–185 (1996).

    Google Scholar 

  58. M.B. Mitchell, V.R. Chakravarthy, and M.G. White, Langmuir 10, 4523 (1994).

    Google Scholar 

  59. C.L. Rollison, Chromium, Molybdenum, Tungsten in Comprehensive Coordination Chemistry(Pergamon Press, New York, 1987), p. 390.

    Google Scholar 

  60. R.D.W. Kemmet, Manganese in Comprehensive Coordination Chemistry(Pergamon Press, Austria, 1973), p. 872.

    Google Scholar 

  61. J.A.R. Van Veen, G. Jonkers, and W.H. Hesselink, J. Chem. Soc. Faraday 85, 389 (1989).

    Google Scholar 

  62. E. Lesage-Rosenberg, G. Vlaic, H. Dexpert, P. Lagarde, and E. Freund, Appl. Catal. 22, 211 (1986).

    Google Scholar 

  63. P. Van Der Voort, M.G. White, and E.F. Vansant, submitted to Langmuir.

  64. A.V. Kiselev and V.I. Lygin, Infrared Spectra of Surface Compounds, 211 (1975).

  65. F.R. Clarke, J.F. Stienback, and W.F. Wagner, J. Inorg. Nucl. Chem. 26, 1311 (1964).

    Google Scholar 

  66. S. Ooi and Q. Fernando, Chem. Commun. 532(1967).

  67. J.A.R. van Veen, P.C. De Jong-Versloot, G.M.M. van Kessel, and F.J. Fels, Thermochimica Acta 152, 359–370 (1989).

    Google Scholar 

  68. J.P. Boitiaux, J. Cosyns, S. Vasudevan, Preparation of Catalysts III(Elsevier, Amsterdam, 1983), p. 123; J.P. Boitiaux, J. Cosyns, M. Derrier, and G. Leger, Hydrocarbon Processing, 51 (1985).

    Google Scholar 

  69. A.D.K. Logan, Sharoudi, and A.K. Datye, J. Phys. Chem. 95, 5568 (1991).

    Google Scholar 

  70. P. Van Der Voort, I. Babitch, P.J. Grobet, A. Verberckmoes, and E.F. Vansant, J. Chem. Soc. Faraday Trans. 92(19) 3635–3642 (1996).

    Google Scholar 

  71. E. White, J. Chem. Soc. 1413(1928).

  72. J.C. Kenvin and M.G. White, J. Catal. 135, 81 (1992).

    Google Scholar 

  73. M. Schraml-Marth, A. Wokaun, M. Pohl, and H.L. Kraus, J. Chem. Soc. Faraday Trans. 87, 2635 (1991).

    Google Scholar 

  74. H. Eckert and I.E. Wachs, J. Phys. Chem. 93, 6796 (1989).

    Google Scholar 

  75. G. Centi, S. Perathoner, F. Trifiro, A. Aboukais, C.F. Aissi, and M. Guelton, J. Phys. Chem. 96, 2617 (1992).

    Google Scholar 

  76. S. Haukka, E.-L. Lakomaa, and T. Suntola, Appl. Surf. Sci. 75, 220 (1994).

    Google Scholar 

  77. I.V. Babich, Yu.V. Plyuto, P. Van Der Voort, and E.F. Vansant, J. Coll. Interface Sci. 189, 144 (1997).

    Google Scholar 

  78. C.P. Tripp, and M.L. Hair, J. Phys. Chem. 97, 5693 (1993).

    Google Scholar 

  79. S. Gontier and A. Tuel, Microporous Mater. 5, 161 (1995).

    Google Scholar 

  80. M. Schraml-Marth, A. Wokaun, M. Paohl, and H.L. Kraus, J. Chem. Soc. Faraday Trans. 92, 843 (1996).

    Google Scholar 

  81. B. Jonson, B. Rebenstorf, R. Larsson, and S.L.T. Anderson, J. Chem. Soc. Faraday Trans. 84, 1897 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voort, P.V.D., Mitchell, M.B., Vansant, E.F. et al. The Uses of Polynuclear Metal Complexes to Develop Designed Dispersions of Supported Metal Oxides: Part I. Synthesis and Characterization. Interface Science 5, 169–197 (1997). https://doi.org/10.1023/A:1008669528505

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008669528505

Navigation