Skip to main content
Log in

Yetter—Drinfel'd H-Azumaya Monoids in Closed Categories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

When C is a symmetric closed category with equalizers and coequalizers and H is a Hopf algebra in C, the category of Yetter—Drinfel’d H-modules is a braided monoidal category.

We develop a categorical version of the results in (10) constructing a Brauer group BQ(C,H) and studying its functorial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barja Pérez, J. M.: Teoremas de Morita para triples en categorías cerradas, Alxebra 20. Depto. Alxebra, Santiago de Compostela, 1977.

  2. Bass, H.: Lectures on topics in algebraic K-theory, Tata Institute of Fundamental Research, Bombay, 1967.

    Google Scholar 

  3. Beattie, M.: The Brauer group of central separable G-Azumaya algebras, J. Algebra 54 (1978), 516–525.

    Google Scholar 

  4. Beattie, M. and Caenepeel, S.: The Brauer–Long group of Z /p t Z-dimodule algebras, J. Pure Appl. Algebra 61 (1989), 219–236.

    Google Scholar 

  5. Benabou, J.: Introduction to bicategories, Lecture Notes in Mathematics 47, Springer-Verlag (1967), 1–67.

  6. Bunge, M.: Relative functor categories and categories of algebras, J. Algebra 11 (1969), 64– 101.

    Google Scholar 

  7. Caenepeel, S.: Computing the Brauer–Long group of a Hopf algebra I: The cohomology theory, Israel J. Math. 72(1–2) (1990), 38–83.

    Google Scholar 

  8. Caenepeel, S.: Computing the Brauer–Long group of a Hopf algebra II: The Skolem–Noether theory, J. Pure Appl. Algebra 84 (1993), 107–144.

    Google Scholar 

  9. Caenepeel, S. and Beattie, M.: Cohomological approach to the Brauer–Long group and the groups of galois extensions and strongly graded rings, Trans. Amer. Math. Soc. 324(2) (1991), 747–775.

    Google Scholar 

  10. Caenepeel, S., Van Oystaeyen, F. and Zhang, Y.: Quantum Yang–Baxter module algebras, K-Theory 8 (1994), 231–255.

    Google Scholar 

  11. Childs, L. N.: The Brauer group of graded algebras II: Graded Galois extensions, Trans. Amer. Math. Soc. 204 (1975), 137–160.

    Google Scholar 

  12. Childs, L. N., Garfinkel, G. and Orzech, M.: The Brauer group of graded Azumaya algebras, Trans. Amer. Math. Soc. 175 (1973), 299–326.

    Google Scholar 

  13. Eilenberg, S. and Kelly, H. F.: Closed categories, Proc. Conference in Categorical Algebra, La Jolla, Springer-Verlag, Berlin (1966), 421–562.

    Google Scholar 

  14. Fernández Vilaboa, J.M.: Grupos de Brauer y de Galois de un álgebra de Hopf en una categoría cerrada, Alxebra 42. Depto. Alxebra, Santiago de Compostela (1985).

  15. Fernández Vilaboa, J. M. and López López, M. P.: Naturalidad respecto a un funtor monoidal de la sucesión exacta rota \(0 \to B\left( {\mathcal{C}} \right) \to BM\left( {{\mathcal{C}},H} \right) \to Gal_{\mathcal{C}} \left( H \right) \to 0\)Proc. VII Congreso de G.M.E.L. (Vol.I), Coimbra, 1985.

  16. Fernández Vilaboa, J. M. and López López, M. P.: Triples H-Azumaya. Grupo de Brauer, Pub. Mat. U.A.B. 30(2–3) (1986), 15–34.

    Google Scholar 

  17. Fernández Vilaboa, J. M., González Rodríguez, R. and Villanueva Novoa, E.: The Picard– Brauer five term exact sequence for a cocommutative finite Hopf algebra, J. Algebra 186 (1996), 384–400.

    Google Scholar 

  18. Knus, M. A.: Algebras graded by a group, category theory, homology theory and their applications II, Lecture Notes in Mathematics 92, Springer-Verlag, Berlin (1969).

    Google Scholar 

  19. Lambe, L. A. and Radford, D. E.: Algebraic aspects of the quantum Yang–Baxter equation, J. Algebra 154 (1992), 228–288.

    Google Scholar 

  20. Long, F.W.: A generalization of the Brauer group of graded algebras, Proc. London Math. Soc. (3) 29 (1974), 237–256.

    Google Scholar 

  21. Long, F. W.: The Brauer group of dimodule algebras, J. Algebra 31 (1974), 559–601.

    Google Scholar 

  22. Mac-Lane, S.: Categories for the working mathematician, G.T.M. 5. Springer (1971).

  23. Orzech, M.: On the Brauer group of algebras having a grading and an action, Canad. J. Math. 28 (1976), 134–147.

    Google Scholar 

  24. Orzech, M.: Brauer groups of graded algebras, Lecture Notes in Math. 549, Springer-Verlag, Berlin (1976), 134–147.

    Google Scholar 

  25. Pareigis, B.: Non additive ring and module theory IV: the Brauer group of a symmetric monoidal category, Lecture Notes in Math. 549, Springer-Verlag, New York, 1976, 112–133.

    Google Scholar 

  26. Radford, D. E. and Towber, J.: Yetter–Drinfel’d categories associated to an arbitrary bialgebra, J. Pure Appl. Algebra 87 (1993), 259–279.

    Google Scholar 

  27. Small, C.: The Brauer–Wall group of a commutative ring, Trans. Amer. Math. Soc. 156 (1971), 455–491.

    Google Scholar 

  28. Wall, C. T. C.: Graded Brauer groups, J. Reine Angew. Math. 213 (1964), 187–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso Alvarez, J.N., Fernández Vilaboa, J.M. & Villanueva Novoa, E. Yetter—Drinfel'd H-Azumaya Monoids in Closed Categories. Applied Categorical Structures 6, 239–265 (1998). https://doi.org/10.1023/A:1008664230452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008664230452

Navigation