Skip to main content
Log in

RAPD and isozyme analysis of genetic relationships between Carica papaya and wild relatives

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The genetic origin of cultivated papaya is not clear. Wild relatives of papaya (Carica papaya) from central southern America were investigated using isozyme and RAPD analysis. Seven other species (including six from the genus Carica) were found to be relatively distant from papaya providing no indication of the genetic origin of papaya. Isozyme and RAPD data gave similar measures of genetic similarity within this group. C. papaya was about 70% dissimilar to the other Carica species by both methods. The other Carica species had average dissimilarities around 50%. Two species, C. pubescens and C. stipulata were much closer to each other with similarities of 87% by isozyme analysis and 82% by RAPD analysis. Although both methods gave similar measures for genetic distance the large number of RAPD markers available made RAPD analysis more reliable for analysis of the extremes (e.g. closely related taxa may show no isozyme differences and distant taxa may show no isozyme similarities).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abo-elwafa, A., K. Murai & T. Shimada, 1995. Intra-and interspecific variations in Lens revealed by RAPD markers. Theor. Appl. Genet. 90: 335–340.

    Google Scholar 

  • Badilo, V., 1971. Monographia de la familia Caricaceae. Maracay, Venezuela.

  • Drew, R.A., 1992. Improved techniques for in vitro propagation and germplasm storage of papaya. HortScience 27: 1122–1124.

    Google Scholar 

  • Graham, G.C., P. Mayers & R.J. Henry, 1994. A simplified method for the preparation of fungal genomic DNA for PCR and RAPD analysis. Biotechniques 16: 48–50.

    Google Scholar 

  • Hebert, P.D.N. & M.J. Beaton, 1989. Methodologies for allozyme analysis using cellulose acetate electrophoresis. Apractical handbook. Helena Laboratories, Beaumont, Texas.

    Google Scholar 

  • Henry, R.J., 1996. Practical Applications of Plant Molecular Biology, Chapman and Hall, London.

  • Horovitz, S. & H. Jimenez, 1967. EsCruzamientos interspecificos e intergen.ricos en Caricaceas y sus implicaciones fitot.cnicas. Agronomia Tropical (Maracay) 17: 323–343.

    Google Scholar 

  • Jordan, M., 1992. Micropropagation of Papaya (Carica spp) In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry 18-High Tech and Micropropagation II, pp. 441–459, Springer-Verlag, New York.

    Google Scholar 

  • Khuspe, S.S., R.R. Hendre, A.F. Mascarenhas, V. Jagannathan, M.V. Thombre & A.B. Joshi, 1980. Utilization of tissue culture to isolate interspecific hybrids in Carica L. In: P.S. Rao, M.R. Heble & M.S. Chadla (Eds.), Plant Tissue Culture, Genetic Manipulation and Somatic Hybridisation of Plant Cells, pp. 198–205, Bhamba Atomic Research Centre: India.

    Google Scholar 

  • Manshardt, R.M. T.F. & Wenslaff, 1989. Zygotic polyembryony in interspecific hybrids of Carica papaya and C. cauliflora. J.Amer. Soc. Hort. Sci. 114: 684–689.

    Google Scholar 

  • Manshardt, R.M., 1992. Papaya In: F.A. Hammerschlag & R.E. Litz (Eds.), Biotechnology of perennial Fruit Crops, pp. 489–511. Cambridge University Press: Oxford.

    Google Scholar 

  • Peakall, R., P.E. Smouse & D.R. Huffs, 1995. Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss Buchloe dactyloides. Molecular Ecology 4: 135–147.

    Google Scholar 

  • Richardson, B.J., P.R. Baverstock & M. Adams, 1986. Allozyme electrophoresis. A handbook for animal systematics and population studies. Academic Press, New York.

    Google Scholar 

  • Russell, J.R., F. Hosein, E. Johnson, R. Waugh & W. Powell, 1993. Genetic differentiation of cocoa (Theobroma cacao L.) populations revealed by RAPD analysis. Molecular Ecology 2: 89–97.

    Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.

    Google Scholar 

  • Shaw, C.R. & R. Prasad, 1970. Starch gel electrophoresis of enzymes. Acompilation of recipes. Biochemical Genetics 4: 297–320.

    Google Scholar 

  • Sokal, R.R. & P.H.A. Sneath, 1963. Principles of Numeric Taxonomy. Freeman, San Francisco. 359 pp.

  • Soltis, D.E., C.H. Haufler, D.C. Darrow & G.J. Gastony, 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. American Fern Journal 73: 9–27.

    Google Scholar 

  • Sondur, S.N., R.M. Manshardt & J.I. Stiles, 1995. Genetics of growth rate and flowering time in papaya (Carica papaya L.). Journal of Quantitative Trait Loci 1: 4.

    Google Scholar 

  • Sneath, P.H.A. & R.R. Sokal, 1973. Numerical Taxonomy. Freeman, San Francisco. 573 pp.

  • Stiles, J.I., C. Lemme, S. Sondur, M.B. Morshidi & R. Manshardt, 1993. Using randomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars. Theor. Appl. Genet. 85: 697–701.

    Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531–6535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jobin-Decor, M., Graham, G., Henry, R. et al. RAPD and isozyme analysis of genetic relationships between Carica papaya and wild relatives. Genetic Resources and Crop Evolution 44, 471–477 (1997). https://doi.org/10.1023/A:1008644901727

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008644901727

Navigation