Skip to main content
Log in

Polymerized Complex Route to the Synthesis of Pure SrTiO3 at Reduced Temperatures: Implication for Formation of Sr-Ti Heterometallic Citric Acid Complex

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Powders of SrTiO3 were prepared by the Pechini-type polymerized complex technique, wherein a mixed solution of citric acid (CA), ethylene glycol (EG), Sr and Ti ions with a molar ratio of CA/EG/Sr/Ti = 10/40/1/1 was polymerized at 130°C to produce a yellowish transparent polyester-type resin without undergoing precipitation, which after decomposition on heating at 350°C was used as a powder precursor for SrTiO3. The formation of pure perovskite SrTiO3 practically free from carbonates occurred when the powder precursor was heat treated at temperatures higher than 500°C in static air. No X-ray diffraction and Raman spectroscopic evidence for phase separation of crystalline SrCO3 and TiO2 as distinct intermediates has been obtained during the thermal decomposition of the powder precursor, suggesting the molecular-scale mixing of cations in the Sr-Ti powder precursor. 13C-NMR spectroscopic measurements have indicated that unusual alkoxylation of CA occurred exclusively when both strontium and titanium ions in equal amounts coexist in CA/EG solutions, the phenomenon of which was discussed in connection with possible formation of a Sr-Ti heterometallic CA complex. The number of CA participating in formation of (Sr, Ti)-CAn was estimated to be n ∼ 3 from the variation of 13C-NMR spectra with relative concentrations of metal ions and CA. This heterometallic complex was thermally stable in CA/EG solutions upon heating at 130°C, implying that the molecular-level homogeneity achieved in the Sr/Ti precursor solution was preserved throughout the polymerization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Watanabe, A. Fujishima, and K. Honda, Bull. Chem. Soc. Jpn. 49, 355 (1976).

    Google Scholar 

  2. U. Balachandran and N.G. Eror, J. Solid State Chem. 39, 351 (1981).

    Google Scholar 

  3. I. Bunn and S. Neirman, J. Mater. Sci. 17, 3510 (1982).

    Google Scholar 

  4. B. Odekirk, U. Balachandran, N.G. Eror, and J.S. Blakemore, Mater. Res. Bull. 17, 199 (1982).

    Google Scholar 

  5. D.P. Partlow and J. Greggi, J. Mater. Res. 2, 595 (1987).

    Google Scholar 

  6. R. Wernicke, Grain boundary phenomenon in electronic ceramics, in Advances in Ceramics, edited by L.M. Levinson (Am. Ceram. Soc. Columbus, Ohio, 1981), Vol. 1. p. 261.

    Google Scholar 

  7. H. Tagawa and K. Igarashi, J. Am. Ceram. Soc. 69, 310 (1986).

    Google Scholar 

  8. J.S. Smith, R.D. Dolloff, and K.S. Mazdiyanni, J. Am. Ceram. Soc. 53, 91 (1970).

    Google Scholar 

  9. R.E. Riman, R.R. Landham, and H.K. Bowen, J. Am. Ceram. Soc. 72, 821 (1989).

    Google Scholar 

  10. U. Selvaraj, A.V. Prasadarao, S. Komarneni, and R. Roy, Mater. Lett. 12, 311 (1991).

    Google Scholar 

  11. H.K. Varma, P. Krishna Pillai, T. Veettil Mani, K.G.K. Warrier, and A.D. Damodaran, J. Am. Ceram. Soc. 77, 129 (1994).

    Google Scholar 

  12. H.K. Varma, P. Krishna Pillai, M.M. Sreekumar, K.G.K. Warrier, and A.D. Damodaran, Br. Ceram. Trans. J. 90, 189 (1991).

    Google Scholar 

  13. P.K. Gallagher, F. Schrey, and F.V. Dimarcello, J. Am. Ceram. Soc. 46, 359 (1963).

    Google Scholar 

  14. F. Schrey, J. Am. Ceram. Soc. 48, 401 (1965).

    Google Scholar 

  15. G. Pfaff, F. Schmidt, W. Ludwig, and A. Feltz, J. Thermal Anal. 33, 77 (1988).

    Google Scholar 

  16. W. Fam and L. Niinistö, Mater. Res. Bull. 29, 451 (1994).

    Google Scholar 

  17. S. Bhattacharjee, M.K. Paria, and H.S. Maiti, Ceram. Int. 18, 295 (1995).

    Google Scholar 

  18. M.M. Lencka and R.E. Riman, Ferroelectronics 151, 159 (1994).

    Google Scholar 

  19. K.D. Budd and D.A. Payne, Better ceramics through chemistry I, in Materials Research Society Symposium Proceedings, edited by C.U. Brinker, D.E. Clatk, and D.R. Ulrich (Elsevier, Pittsburgh, PA, 1984), Vol. 32, p. 239.

    Google Scholar 

  20. S.G. Cho, P.F. Johnson, and R.A. Condrate, Sr., J. Mater. Sci. 25, 4738 (1990).

    Google Scholar 

  21. E.R. Leite, C.M.G. Sousa, E. Longo, and J.A. Varela, Ceram. Int. 21, 143 (1995).

    Google Scholar 

  22. E.R. Leite, J.A. Varela, E. Longo, and C.A. Paskocimas, Ceram. Int. 21, 153 (1995).

    Google Scholar 

  23. M.P. Pechini, U.S. Patent No. 3,330,697, July 1967.

  24. N.H. Chan, R.K. Sharma, and D.M. Smyth, J. Electrochem. Soc. 128, 1762 (1981).

    Google Scholar 

  25. M. Kakihana, J. Sol Gel Sci. Tech. 6, 7 (1996).

    Google Scholar 

  26. M. Kakihana, M. Arima, M. Yashima, M. Yoshimura, Y. Nakamura, H. Mazaki, and H. Yasuoka, Sol-gel science and technology, in Ceramic Transactions, edited by E.J. Pope, S. Sakka, and L. Klein (Am. Ceram. Soc., Westerville, Ohio, 1995), Vol. 55, p. 65.

    Google Scholar 

  27. M. Arima, M. Kakihana, Y. Nakamura, M. Yashima, and M. Yoshimura, J. Am. Ceram. Soc. 79, 2847 (1996).

    Google Scholar 

  28. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordinate Compounds, 4th edition (Wiley, New York, 1986).

    Google Scholar 

  29. J.T. Last, Phys. Rev. 105, 1740 (1957).

    Google Scholar 

  30. M. Kakihana, M. Yashima, M. Yoshimura, L. Börjesson, and M. Käll, Trends in Appl. Spectroscopy 1, 261 (1993).

    Google Scholar 

  31. T. Furukawa and W.B. White, Phys. Chem. Glasses 20, 69 (1979).

    Google Scholar 

  32. U. Balachandran and N.G. Eror, J. Solid State Chem. 42, 276 (1982).

    Google Scholar 

  33. L.F. Johnson and W.C. Jankowski, Carbon-13 NMR Spectra (John Wiley & Sons, Inc. New York, 1972).

    Google Scholar 

  34. M.L. Martin, G.J. Martin, and J.-J. Delpuech, Practical NMR Spectroscopy (Heyden & Son Ltd., London, 1980).

    Google Scholar 

  35. T. Fujita, Chemical and Pharmaceutical Bulletin 30, 3461 (1982).

    Google Scholar 

  36. J. Strouse, S.W. Layten, and C.E. Strouse, J. Am. Chem. Soc. 99, 562 (1977).

    Google Scholar 

  37. The integrated intensities of the 91 ppm and 77 ppm features relative to those of the 46 ppm feature associated with —CH2—of CA increase and decrease linearly, respectively, with increasing metal concentration.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakihana, M., Okubo, T., Arima, M. et al. Polymerized Complex Route to the Synthesis of Pure SrTiO3 at Reduced Temperatures: Implication for Formation of Sr-Ti Heterometallic Citric Acid Complex. Journal of Sol-Gel Science and Technology 12, 95–109 (1998). https://doi.org/10.1023/A:1008613312025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008613312025

Keywords

Navigation