Skip to main content
Log in

Modules and Behaviours in nD Systems Theory

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is intended both as an introduction to the behavioural theory of nD systems, in particular the duality of Oberst and its applications, and also as a bridge between the behavioural theory and the module-theoretic approach of Fliess, Pommaret and others. Our presentation centres on Pommaret's notion of a system observable, and uses this concept to provide new interpretations of known behavioural results. We discuss among other subjects autonomous systems, controllable systems, observability, transfer matrices, computation of trajectories, and system complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Becker and V. Weispfenning, Gröbner Bases: A Computational Approach to Commutative Algebra, volume 141 of Graduate Texts in Mathematics, Springer-Verlag, 1993.

  2. J.-E. Björk, Rings of Differential Operators, North-Holland Publishing Company, 1979.

  3. H. Bourlès and M. Fliess, “Finite Poles and Zeros of Linear Systems: An Intrinsic Approach,” Int. J. of Control, vol. 68, no. 4, 1997, pp. 897-922.

    Google Scholar 

  4. B. Buchberger, “Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory,” In N. K. Bose, editor, Multidimensional systems theory, D. Reidel, 1985, pp. 184-232.

  5. P. M. Cohn, Algebra, volume 2. Chinchester, UK, John Wiley and Sons, 2nd edition, 1989.

    Google Scholar 

  6. D. Cox, J. Little, and D. O'hea, Ideals, Varieties and Algorithms, Springer-Verlag, 2nd edition, 1996.

  7. E. Delaleau and M. Fliess, “Algorithme de Structure, Filtrations et Découplage,” Computes Rendus Hebdomadaires des Séances de l'Academie des Sciences, Serie I, vol. 315, 1992, pp. 101-106.

    Google Scholar 

  8. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, volume 150 of Graduate Texts in Mathematics, Springer-Verlag, 1995.

  9. M. Fliess, “Generalized Controller Canonical Forms for Linear and Nonlinear Dynamics,” IEEE Trans. on Auto. Contr., vol. 35, 1990, pp. 994-1001.

    Google Scholar 

  10. M. Fliess, “Some Basic Structural Properties of Generalized Linear Systems,” Systems and Control Letters, vol. 15, 1990, pp. 391-396.

    Google Scholar 

  11. M. Fliess, “Controllability Revisited,” In A. C. Antoulas, editor, Mathematical System Theory (the influence of R. E. Kalman), pp. 463-474, Springer-Verlag, 1991.

  12. M. Fliess, “A Remark on Willems Trajectory Characterization of Linear Controllability,” Syst. Contr. Lett., vol. 19, 1992, pp. 43-45.

    Google Scholar 

  13. M. Fliess, “Une Interprétation Algébrique de la Transformation de Laplace et des Matrices de Transfert,” Linear Algebra and Its Applications, vol. 203-204, 1994, pp. 429-442.

    Google Scholar 

  14. M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples,” International Journal of Control, vol. 61, no. 6, 1995, pp. 1327-1361.

    Google Scholar 

  15. E. Fornasini, P. Rocha, and S. Zampieri, “State Space Realization of 2-D Finte-Dimensional Behaviours,” SIAM J. on Contr. and Opt., vol. 31, no. 6, 1993, pp. 1502-1517.

    Google Scholar 

  16. E. Fornasini and M. E. Valcher, “Algebraic Aspects of 2D Convolutional Codes,” IEEE Trans. in Inf. Tech., vol. 33, 1993, pp. 1210-1225.

    Google Scholar 

  17. E. Fornasini and M. E. Valcher. “nD Polynomial Matrices with Applications to Multidimensional Signal Analysis,” Multidimensional Systems and Signal Processing, vol. 8, no. 4, 1997, pp. 387-408.

    Google Scholar 

  18. S. Fröhler and U. Oberst, “Continuous Time-Varying Linear Systems, Syst. Contr. Lett., vol. 35, no. 2, 1998, pp. 97-110.

    Google Scholar 

  19. H. Glüsing-Lüerßen, “A Behavioural Approach to Delay-Differential Systems,” SIAM J. Control Optim., vol. 35, no. 2, 1997, pp. 480-499.

    Google Scholar 

  20. H. Goldschmidt, “Integrability Criterion for Systems of Nonlinear Partial Differential Equations,” J. Differential Geom., vol. 1, 1969, pp. 269-307.

    Google Scholar 

  21. L. C. G. J. M. Habets. “System Equivalence for Delay-Differential Systems with Incommensurable Delays,” Presented at the 13th International Symposium on the Mathematical Theory of Networks and Systems, Padua, Italy, 1998.

  22. M. Janet, “Les Systèms d Équations aux Dérivées Partielles,” J. Math. Pure Appl., vol. 3, 1920, p. 65.

    Google Scholar 

  23. R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical Systems Theory, International Series in Pure and Applied Mathematics, McGraw-Hill, 1969.

  24. S. Kleon and U. Oberst, “Transfer Operators and State Spaces for Discrete Multidimensional Linear Systems,” Acta Applicandae Mathematicae, vol. 57, 1999, pp. 1-82.

    Google Scholar 

  25. J. Komorník, P. Rocha, and J. C. Willems. “Closed Subspaces, Polynomial Operators in the Shift, and ARMA Representations,” Applied Mathematics Letters, vol. 4, no. 3, 1991, pp. 15-19.

    Google Scholar 

  26. V. Lomadze, “Finite-Dimensional Time-Invariant Linear Dynamical Systems: Algebraic Theory,” Acta Appliacandae Mathematicae, vol. 19, 1990, pp. 149-201.

    Google Scholar 

  27. H. Mounier, Propriétés Structurelles des Systèmes Linéaires A Retards: Aspects Théoriques et Pratiques, PhD thesis, Université Paris-Sud, 1995.

  28. M. Napoli and S. Zampieri, “2D Proper Rational Matrices and Causal Input/Output Representations of 2D Behavioural Systems,” SIAM J. on Control and Optimization, vol. 37, 1999, pp. 1538-1552.

    Google Scholar 

  29. U. Oberst, “Multidimensional Constant Linear Systems,” Acta Applicandae Mathematicae, vol. 20, 1990, pp. 1-175.

    Google Scholar 

  30. U. Oberst, “On the Minimal Number of Trajectories Determining a Multidimensional System,” Mathematics of Control, Signals and Systems, vol. 6, 1993, pp. 264-288.

    Google Scholar 

  31. U. Oberst, “Variations on the Fundamental Principle for Linear Systems of Partial Differential and Difference Equations with Constant Coefficients,” Applicable Algebra in Engineering, Communication and Computing, vol. 6, no. 4/5, 1995.

  32. U. Oberst, “Finite Dimensional Systems of Partial Differential or Difference Equations,” Advances in Applied Mathematics, vol. 17, 1996, pp. 337-356.

    Google Scholar 

  33. V. P. Palamodov. Linear Differntial Operators with Constant Coefficients, Springer-Verlag, 1970.

  34. F. Pauer and A. Unterkircher, “Gröbner Bases for Ideas in Laurent Polynomial Rings and Their Application to Systems of Difference Equations,” Applicable Algebra in Engineering, Communication and Computing, vol. 9, 1999, pp. 271-291.

    Google Scholar 

  35. F. Pauer and S. Zampieri, “Gröbner Bases with respect to Generalized Term Orders and Their Application to the Modelling Problem,” J. Symbolic Computation, vol. 21, 1996, pp. 155-168.

    Google Scholar 

  36. H. Pillai and S. Shankar, “A Behavioural Approach to Control of Distributed Systems,” SIAM Journal on Control and Optimization, vol. 37, 1999, pp. 388-408.

    Google Scholar 

  37. J. W. Polderman and J. C. Willems, Introduction to Mathematical Systems Theory: A Behavioural Approach, volume 26 of Texts in Applied Mathematics, Springer-Verlag, 1997.

  38. J.-F. Pommaret, “New Perspectives in Control Theory for Partial Differential Equations,” IMA Journal on Mathematical Control and Information, vol. 9, 1992, pp. 305-330.

    Google Scholar 

  39. J.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications, volume 293 of Mathematics and Its Applications, Dordrecht, 1994.

  40. J.-F. Pommaret and A. Quadrat, “Formal Elimination for Multidimensional Systems and Applications to Control Theory,” Technical Report 97-108, CERMICS/INRIA ENPC, France, 1997. Submitted for publication.

    Google Scholar 

  41. J.-F. Pommaret and A. Quadrat, “Algebraic Analysis of Linear Multidimensional Control Systems,” IMA J. on Math. Control and Information, vol. 16, 1999, pp. 275-297.

    Google Scholar 

  42. J.-F. Pommaret and A. Quadrat, “Generalized Bezout Identity,” Applicable Algebra in Engineering, Communication and Computing, vol. 9, no. 2, 1998, pp. 91-116.

    Google Scholar 

  43. Ch. Riquier, La Méthode des Fonctions Majorantes et les Systèmes d’ Équations aux Dérivées Partielles, volume XXXII of Mémorial Sci. Math., Gauthier-Villars, Paris, 1910.

    Google Scholar 

  44. P. Rocha, Structure and Representation of 2D Systems, PhD thesis, University of Groningen, The Netherlands, 1990.

    Google Scholar 

  45. P. Rocha, “State/Driving-Variable Representations and Model Reduction for l2 2D Systems,” In Proc. of the European Control Conference 1997, 1997.

  46. P. Rocha and J. C. Willems, “State for 2-D Systems,” J. Linear Algebra Appl., vol. 121-123, 1989, pp. 1003-1038.

    Google Scholar 

  47. P. Rocha and J. Wood, “A Foundation for the Control Theory of nD Behaviours,” Presented at the 13th International Symposium on the Mathematical Theory of Networks and Systems, Padua, Italy, 1997.

  48. P. Rocha and J. Wood, “A New Perspective on Controllability Properties for Dynamical Systems,” Applied Mathematics and Computer Science, vol. 7, no. 4, 1997, pp. 869-879.

    Google Scholar 

  49. J. Rosenthal, “Some Interesting Problems in Systems Theory which are of Fundamental Importance in Coding Theory,” In Proc. of the 36th IEEE Conference on Decision and Control, IEEE, 1997, pp. 4574-4579.

  50. J. Rudolph, “Duality in Time-Varying Linear Systems-A Module Theoretic Approach,” Linear Algebra and Its Applications, vol. 245, 1996, pp. 83-106.

    Google Scholar 

  51. D. C. Spencer, “Overdetermined Systems of Partial Differential Equations,” Bull. Am. Math. Soc., vol. 75, 1965, pp. 1-114.

    Google Scholar 

  52. M. E. Valcher, “Characteristic Cones and Stability Properties of Two-Dimensional Autonomous Behaviours,” To appear in IEEE Trans. Circ. and Sys. Part I, 2000.

  53. M. E. Valcher, “On the Decomposition of Two-Dimensional Behaviours,” Submitted for publication, 1998.

  54. J. C. Willems, “From Time Series to Linear System-Part I: Finte-Dimensional Linear Time Invariant ystems,” Automatica, vol. 22, no. 5, 1986, pp. 561-580.

    Google Scholar 

  55. J. C. Willems, “Paradigms and Puzzles in the Theory of Dynamical Systems,” IEEE Trans. on Auto. Contr., vol. 36, no. 3, 1991, pp. 259-294.

    Google Scholar 

  56. J. C. Willems, “On Interconnections, Control, and Feedback,” IEEE Trans. on Auto. Contr., vol. 42, no. 4, 1997, pp. 458-472.

    Google Scholar 

  57. J. Wood, U. Oberst, E. Rogers, and D. H. Owens, “A Behavioural Approach to the Pole Structure of 1D and nD Linear Systems,” To appear in SIAM J. on Contr. and Opt., 1998.

  58. J. Wood, P. Rocha, E. Rogers, and D. H. Owens, “Structure Indices for Multidimensional Systems,” To appear in the IMA J. of Mathematical Control and Information, vol. 10, 1999, pp. 33-69.

    Google Scholar 

  59. J. Wood, E. Rogers, and D. H. Owens, “A Formal Theory of Matrix Primeness,” Mathematics of Control, Signals and Systems, vol. 11, no. 1, 1998, pp. 40-78.

    Google Scholar 

  60. J. Wood, E. Rogers, and D. H. Owens, “Controllable and Autonomous nD Systems,” Mult. Systems and Signal Processing, vol. 10, 1999, pp. 33-69.

    Google Scholar 

  61. J. Wood and E. Zerz, “Notes on the Definition of Behavioural Controllability,” Sys. and Contr. Lett., vol. 37, 1999, pp. 31-37.

    Google Scholar 

  62. S. Zampieri, “A Solution of the Cauchy Problem for Multidimensional Discrete Linear Shift-Invariant Systems,” Linear Algebra and Its Applications, vol. 202, 1994, pp. 143-162.

    Google Scholar 

  63. S. Zampieri, “A Behavioural Approach to Identifiability to 2D Scalar Systems,” Automatica, vol. 33, no. 1, 1997, pp. 49-61.

    Google Scholar 

  64. S. Zampieri, “Causal Input/Output Representation of 2D Systems in the Behavioural Approach,” the SIAM Journal on Mathematical Control and Optimization, vol. 36, 1998, pp. 1133-1146.

    Google Scholar 

  65. E. Zerz, “Primeness of Multivariate Polynomial Matrices,” Systems and Control Letters, vol. 29, no. 3, 1996, pp. 139-146.

    Google Scholar 

  66. E. Zerz and U. Oberst, “The Canonical Cauchy Problem for Linear Systems of Partial Differnece Equations with Constant Coefficients Over the Complete r-Dimensional Integral Lattice Zr, Acta Applicandae Mathematicae, vol. 31, no. 3, 1993, pp. 249-273.

    Google Scholar 

  67. Y. F. Zheng, J. C. Willems, and C. S. Zhang, “Common Factors and Controllability of Nonlinear Systems,” In Proceedings of the 36th IEEE Conference on Decision and Control, 1997, pp. 2584-2589.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, J. Modules and Behaviours in nD Systems Theory. Multidimensional Systems and Signal Processing 11, 11–48 (2000). https://doi.org/10.1023/A:1008430528456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008430528456

Navigation