Skip to main content
Log in

Nonlinear Response of Cylindrical Shells to Random Excitation

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An analytical study of nonlinear flexural vibrations of cylindrical shells to random excitation is presented. Donnell's thin-shell theory is used to develop the governing equations of motion. Thermal effects for a uniform temperature rise through the shell thickness are included in the formulation. A Monte Carlo simulation technique of stationary random processes, multi-mode Galerkin-like approach and numerical integration procedures are used to develop nonlinear response solutions of simply-supported cylindrical shells. Numerical results include time domain response histories, root-mean-square values and histograms of probability density. Comparison of Monte Carlo results is made to those obtained by statistical linearization and the Fokker–Planck equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markus, S., The Mechanics of Vibrations of Cylindrical Shells, Elsevier, Amsterdam, 1988.

    Google Scholar 

  2. Soedel, W., Vibrations of Shells and Plates, Marcel Dekker, New York, 1993.

    Google Scholar 

  3. Sathyamoorthy, M., Nonlinear Analysis of Structures, CRC Press, Boca Raton, FL, 1997.

    Google Scholar 

  4. Novozhilov, V. V., Foundations of the Nonlinear Theory of Elasticity, Graylock Press, Rochester, NY, 1953.

    Google Scholar 

  5. Mushtari, Kh. M. and Galimov, K. Z., Non-Linear Theory of Thin Elastic Shells, published for the National Science Foundation by the Israel Program for the Scientific Translations, Washington, DC, 1961.

    Google Scholar 

  6. Donnell, L. H., 'A new theory for the buckling of thin cylinders under axial compression and bending', Transactions of the ASME 56, 1934, 795–806.

    Google Scholar 

  7. Sanders, J. L., 'Nonlinear theory of thin sells', Quarterly of Applied Mathematics 21, 1963, 21–36.

    Google Scholar 

  8. Chu, H. N., 'Influence of large amplitude on flexural vibrations of a thin circular cylindrical shell', Journal of the Aerospace Sciences 28, 1961, 602–609.

    Google Scholar 

  9. Evensen, D., 'Nonlinear flexural vibrations of thin-walled circular cylinders', NASA TN D-4090, Langley Research Center, Langley Station, Hampton, VA, 1967.

    Google Scholar 

  10. Evensen, D. A., 'A theoretical and experimental study of the nonlinear flexural vibrations of thin circular rings', NASA TR R-227, Langley Research Center, Langley Station, Hampton, VA, 1965.

    Google Scholar 

  11. Nowinski, J. L., 'Nonlinear transverse vibrations of orthotropic cylindrical shells', AIAA Journal 1, 1963, 617–620.

    Google Scholar 

  12. Dowell, E. H. and Ventres, C. S., 'Modal equations for the nonlinear flexural vibrations of a cylindrical shell', International Journal of Solids and Structures 4, 1968, 975–991.

    Google Scholar 

  13. Evensen, D. A., 'Nonlinear vibrations of an infinitely long cylindrical shell', AIAA Journal 6(7), 1968, 1401–1403.

    Google Scholar 

  14. Evensen, D. A., 'Some observations on the nonlinear vibration of the cylindrical shells', AIAA Journal 1(12), 1963, 2857–2858.

    Google Scholar 

  15. Chen, J. C. and Babcock, C. D., 'Nonlinear vibrations of cylindrical shells', AIAA Journal 13(7), 1975, 868–876.

    Google Scholar 

  16. Atluri, S., 'A perturbation analysis of non-linear free flexural vibrations of a circular cylindrical shell', International Journal of Solids and Structures 8, 1972, 549–569.

    Google Scholar 

  17. Evensen, D. A., 'Nonlinear flexural vibrations of thin circular rings', Ph.D. Thesis, California Institute of Technology, 1964.

  18. Ibrahim, R. A., 'Recent results in random vibrations of nonlinear mechanical systems', Transactions of the ASME 117, 1995, 222–233.

    Google Scholar 

  19. Ng, CF., 'Nonlinear and snap-through responses of curved panels to intense acoustic excitation', Journal of Aircraft 26, 1989, 281–288.

    Google Scholar 

  20. Lee, J., 'Large amplitude plate vibration in an elevated thermal environment', Applied Mechanics Review 46(2), 1993, 242–254.

    Google Scholar 

  21. Lee, J. 'Random vibration of thermally buckled plates: I. Zero temperature gradient across the plate thickness', in Progress in Aeronautics and Astronautics, 168, Aerospace Thermal Structures and Materials for a New Era, E. A. Thornton (ed.), AIAA, Washington, DC, 1995, pp. 41–67.

    Google Scholar 

  22. Lee, J., Vaicaitis, R., Wentz, K., Clay, C., Anselmo, E., and Crumbacher, R., 'Prediction of statistical dynamics of thermally buckled composite panels', in 39th SDM Conference, AIAA-98-1975, Long Beach, CA, April 1998, pp. 2539–2549.

  23. Ziegler, F., Heuer, R., and Irschik, H., 'Dynamic snap-through and snap-buckling of shear deformable panels in random environment', in IUTAM Symposium on Probabilistic Structural Mechanics: Advances in Structural Reliability Methods, San Antonio, TX, June, P. D. Spanos, and Y.-T. Wu (eds.), Springer-Verlag, Berlin, 1993, pp. 595–610.

    Google Scholar 

  24. Choi, S. T. and Vaicaitis, R., 'Nonlinear response and fatigue of stiffened panels', Probabilistic Engineering Mechanics 4(3), 1989, 150-160.

    Google Scholar 

  25. Kavallieratos, P. and Vaicaitis, R., 'Nonlinear response of composite panels of high speed aircraft', Composites Engineering 3(7–8), 1993, 645–660.

    Google Scholar 

  26. Locke, J. E., 'Finite element large deflection random response of thermally buckled plates', Journal of Sound and Vibration 160(2), 1993, 301–312.

    Google Scholar 

  27. Dogan, V., 'Nonlinear response of cylindrical shells to random excitation', Ph.D. Thesis, Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, 1995.

    Google Scholar 

  28. Shinozuka, M., 'Monte Carlo solution of structural dynamic', International Journal of Composites and Structures 2, 1972, 855–874.

    Google Scholar 

  29. Shinozuka, M. and Jan, C. M., 'Digital simulation of random processes and its applications', Journal of Sound and Vibration 25(1), 1972, 111–128.

    Google Scholar 

  30. Vaicaitis, R., Jan, C. M., and Shinozuka, M., 'Nonlinear panel response from a turbulent boundary layer', AIAA Journal 10(7), 1972, 895–899.

    Google Scholar 

  31. Vaicaitis, R., Dowell, E. H., and Ventres, C. S., 'Nonlinear panel response by a Monte Carlo approach', AIAA Journal 12(5), 1974, 685–691.

    Google Scholar 

  32. Roberts, J. B. and Spanos, P. D., Random Vibrations and Statistical Linearization, Wiley, New York, 1990.

    Google Scholar 

  33. Lutes, L. D. and Sarkani, S., Stochastic Analysis of Structural and Mechanical Vibrations, Prentice-Hall, Englewood Cliffs, NJ, 1997.

    Google Scholar 

  34. Ross, B., Hoff, N. J., and Horton, W. H., 'The buckling behavior of uniformly heated thin circular cylindrical shells', Experimental Mechanics 6, 1966, 529–537.

    Google Scholar 

  35. Bushnell, D. and Smith, S., 'Stress and buckling of nonuniformly heated cylindrical and conical shells', AIAA Journal 9(12), 1971, 2314–2321.

    Google Scholar 

  36. Anderson, M. S., 'Thermal buckling of cylinders', NASA TN-1510, 1962, pp. 255–265.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogan, V., Vaicaitis, R. Nonlinear Response of Cylindrical Shells to Random Excitation. Nonlinear Dynamics 20, 33–53 (1999). https://doi.org/10.1023/A:1008398007849

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008398007849

Navigation