Microbial degradation of tannins – A current perspective

Abstract

Tannins are water-soluble polyphenolic compounds having wide prevalence in plants. Hydrolysable and condensed tannins are the two major classes of tannins. These compounds have a range of effects on various organisms – from toxic effects on animals to growth inhibition of microorganisms. Some microbes are, however, resistant to tannins, and have developed various mechanisms and pathways for tannin degradation in their natural milieu. The microbial degradation of condensed tannins is, however, less than hydrolysable tannins in both aerobic and anaerobic environments. A number of microbes have also been isolated from the gastrointestinal tract of animals, which have the ability to break tannin-protein complexes and degrade tannins, especially hydrolysable tannins. Tannase, a key enzyme in the degradation of hydrolysable tannins, is present in a diverse group of microorganisms, including rumen bacteria. This enzyme is being increasingly used in a number of processes. Presently, there is a need for increased understanding of the biodegradation of condensed tannins, particularly in ruminants.

This is a preview of subscription content, access via your institution.

References

  1. Adachi O, Watanabe M & Yamada H (1968) Studies on fungal tannase. II. Physico-chemical properties of the tannase of Aspergillus flavus.Agric. Biol. Chem. 32: 1079-1085.

    Google Scholar 

  2. Adachi O, Watanabe M & Yamada H (1971) Studies on fungal tannase. III. Inhibition of tannase by diisopropylfluorophosphate. J. Ferment. Technol. 49: 230-234.

    Google Scholar 

  3. Aoki K, Shinke R & Nishira H (1976a) Purification and some properties of the yeast tannase. Agric. Biol. Chem. 40: 79-85.

    Google Scholar 

  4. Aoki K, Shinke R & Nishira H (1976b) Chemical composition and molecular weight of yeast tannase. Agric. Biol. Chem. 40: 297-302.

    Google Scholar 

  5. Archambault J, Lacki K & Duvnjak Z (1996) Conversion of catechin and tannic acid by an enzyme preparation from Trametes versicolor.Biotechnol. Letters 18: 771-774.

    Google Scholar 

  6. Bae HD, McAllister TA, Yanke J, Cheng KJ & Muir AD (1993) Effects of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes585. Appl. Environ. Microbiol. 59: 2132-2138.

    Google Scholar 

  7. Bajpai B & Patil S (1996) Tannin acyl hydrolase activity of Aspergillus, Penicillium, Fusariumand Trichoderma.W. J. Microbiol. Biotechnol. 12: 217-220.

    Google Scholar 

  8. Barthomeuf C, Regerat F & Pourrat H (1994) Production, purification and characterization of a tannase from Aspergillus nigerLCF 8. J. Ferment Technol. 77: 320-323.

    Google Scholar 

  9. Barz W & Hosel W (1975) In: The Flavonoids (Eds. Harborne JB, Mabry TJ & Mabry H) pp. 916-969, Chapman & Hall, London.

    Google Scholar 

  10. Berry DF, Francis AJ & Bollag JM (1987) Microbial metabolism of homocyclic and hetrocyclic aromatic compounds under anaerobic conditions. Microbiol. Rev. 51: 43-59.

    PubMed  Google Scholar 

  11. Beverini M & Metche M (1990) Identification, purification and physicochemical properties of tannase of Aspergillus oryzae.Sci. des Aliments 10: 807-816.

    Google Scholar 

  12. Bhat TK, Makkar HPS & Singh B (1996) Isolation of a tannin-protein complex degrading fungus from the faeces of hill cattle. Lett. Appl. Microbiol. 22: 257-258.

    PubMed  Google Scholar 

  13. Bhat TK, Makkar HPS & Singh B (1997) Preliminary studies on tannin degradation by Aspergillus nigervan Tieghem MTCC 2425. Lett. Appl. Microbiol. 25: 22-23.

    Article  PubMed  Google Scholar 

  14. Bradoo S, Gupta R & Saxena RK (1996) Screening of extracellular tannase-producing fungi:development of a rapid and simple plate assay. J. Gen. Appl. Microb. 42: 325-330.

    Google Scholar 

  15. Bradoo S, Gupta R & Saxena RK (1997) Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus.Process Biochem. 32: 135-139.

    Article  Google Scholar 

  16. Brooker JD, O'Donovan LA, Skene IK, Clark K, Blackall L & Muslera P (1994) Streptococcus caprinussp. nov., a tannin-resistant ruminal bacterium from feral goats. Lett. Appl. Microbiol. 18: 313-318.

    Google Scholar 

  17. Brown JP (1977) In: Critical Reviews in Food Science and Nutrition Vol. 8 (Ed. Furia TE) pp. 229-336, Chemical Rubber Co. Press, Boca Raton, Florida.

    Google Scholar 

  18. Brune A & Schink B (1990) Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell-free extracts of Pelobacter acidigallici.J. Bacteriol. 172: 1070-1076.

    PubMed  Google Scholar 

  19. Brune A & Schink B (1992) Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch. Microbiol. 157: 417-424.

    Google Scholar 

  20. Cantarelli C, Brenna O, Giovanelli G & Rossi M (1989) Beverage stabilization through enzymic removal of phenolics. Food Biotech. 3: 203-213.

    Google Scholar 

  21. Chatterjee R, Dutta A, Banerjee R & Bhattacharya BC (1996) Production of tannase by solid-state fermentation. Bioprocess Engg. 14: 159-162.

    Article  Google Scholar 

  22. Deschamps AM, Mohudeau G, Conti M & Lebeault JM (1980) Bacteria degrading tannic acid and related compounds. J. Ferment Technol. 58: 93-97.

    Google Scholar 

  23. Deschamps AM, Otuk G & Lebeault JM (1983) Production of tannase and degradation of chestnut tannins by bacteria. J. Ferment Technol. 61: 55–59.

    Google Scholar 

  24. Deschamps AM & Lebeault JM (1984) Production of gallic acid from tara (Caesalpinia spinosa) tannin by bacterial strains. Biotechnol. Letters 6: 237-242.

    Google Scholar 

  25. Deschamps AM (1989) Microbial degradation of tannins and related compounds. In: Lewis NG and Paice MG (Eds) Plant Cell Wall Polymers Biogenesis and Biodegradation (pp. 559-566).

  26. Dhar SC & Bose SM (1964) Purification, crystallization and physico-chemical properties of tannase from Aspergillus niger.Leather Sci. 11: 27-38.

    Google Scholar 

  27. Doi S, Shinmyo A, Enatsu T & Terui G (1973) Growth associated production of tannase by a strain of Aspergillus oryzae.J. Ferment. Technol. 61: 768-774.

    Google Scholar 

  28. Evans WC & Fuchs G (1988) Anaerobic degradation of aromatic compounds. Ann. Rev. Microbiol. 42: 289-317.

    Article  Google Scholar 

  29. Farias GM, Elkins JR & Griffin GJ (1992) Tannase activity associated with growth of Cryphonectria parasiticaon American and Chinese chestnut extracts and properties of the enzyme. Eur. J. Forest Pathol. 22: 392-402.

    Google Scholar 

  30. Farias GM, Gorbea C, Elkins JR & Griffin GJ (1994) Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica.Physiol. Mol. Plant Pathol. 44: 51-63.

    Google Scholar 

  31. Fewson CA (1981) In: Microbial degradation of xenobiotics and recalcitrant compounds, FEMS Symposium No.12 (Eds. Leisinger T, Hutter R, Cook AM & Nuesch J) pp. 141-180, Academic Press, London.

    Google Scholar 

  32. Field JA & Lettinga G (1987) The methanogenic toxicity and anaerobic degradability of a hydrolyzable tannin. Water Res. 21: 367-374.

    Article  Google Scholar 

  33. Field JA & Lettinga G (1989) The effect of oxidative coloration on the methanogenic toxicity and anaerobic biodegradability of phenols. Biol. Wastes 29: 161-179.

    Article  Google Scholar 

  34. Field JA & Lettinga G (1992a) Toxicity of tannic compounds to microorganisms. In: Hemingway RW & Laks E (Eds) Plant Polyphenols: Synthesis, Properties, Significance (pp. 673–692). Plenum Press, New York.

    Google Scholar 

  35. Field JA & Lettinga G (1992b) Biodegradation of tannins. In: Sigel H (Ed) Metal Ions in Biological Systems Volume 28. Degradation of environmental pollutants by microorganisms and their metalloenzymes. (pp. 61-97). Marcel Dekker Inc, New York.

    Google Scholar 

  36. Fillipich LJ, Zhu J & Oelrichs P, Alsalami MT, Doig AJ, Cao GR & English PB (1991) Hepatotoxic and nephrotoxic principles in Terminalia oblongata.Res. Vet. Sci. 50: 170-177.

    PubMed  Google Scholar 

  37. Fuchs G, Mohamed MES, Altenschmidt U, Koch J, Lack A, Brackmann R, Lochmeyer C & Oswald B (1994) Biochemistry of anaerobic biodegradation of aromatic compounds. In: Ratledge C (Ed) Biochemistry of Microbial Degradation (pp. 513-553). Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  38. Gamble GR, Akin DE, Makkar HPS & Becker K (1996) Biological degradation of tannins in sericea lespedeza (Lespedeza cuneata) by the white rot fungi Ceriporiopsis subvermisporaand Cyathus stercoreusanalysed by solid state 13C nuclear magnetic resonance spectroscopy. Appl. Environ. Microbiol. 62: 3600-3604.

    PubMed  Google Scholar 

  39. Ganga PS, Nandy SC & Santappa M (1977) Effect of environmental factors on the production of fungal tannase. Leather Sci. 24: 8-16.

    Google Scholar 

  40. Garg SK, Makkar HPS, Nagal KB, Sharma SK, Wadhwa DR & Singh B (1992) Toxicological investigations into oak (Quercus incana) leaf poisoning in cattle. Vet. Human Toxicol. 34: 161-164.

    Google Scholar 

  41. Gibson DT & Subramanian V (1984) Microbial degradation of aromatic compounds. In: Gibson DT (Ed) Microbial degradation of organic compounds (pp. 181-252). Marcel Dekker Inc., New York.

    Google Scholar 

  42. Graham HN (1992) Green tea composition, consumption and polyphenol chemistry. Prev. Med. 21: 334-350.

    Article  PubMed  Google Scholar 

  43. Gupta R, Bradoo S & Saxena RK (1997) Rapid purification of extracellular tannase using polyethylene glycol-tannic acid complex. Lett. Appl. Microbiol. 24: 253-255.

    Article  Google Scholar 

  44. Hadi TA, Banerjee R & Bhattacharya BC (1994) Optimization of tannase biosynthesis by a newly isolated R. oryzae.Bioprocess Engg. 11, 239-242.

    Article  Google Scholar 

  45. Haslam E (1989) Plant polyphenols - vegetable tannins revisited. Cambridge University Press, Cambridge.

    Google Scholar 

  46. Haslam E & Stangroom JE (1966) The esterase and depside activities of the tannase. Biochem. J. 99: 28-31.

    PubMed  Google Scholar 

  47. Haslam E & Tanner RJN (1970) Spectrophotometric assay of tannase activity. Phytochemistry 9: 2305-2309.

    Article  Google Scholar 

  48. Hatamoto O, Watarai T, Kikuchi M, Mizusawa K & Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae.Gene 175: 215-221.

    Article  PubMed  Google Scholar 

  49. Iibuchi S, Minoda Y & Yamada K (1967) Studies on tannin acyl hydrolase of microorganisms. Part II. A new method determining the enzyme activity using the change of ultra violet absorption. Agric. Biol. Chem. 31: 513-518.

    Google Scholar 

  50. Iibuchi S, Minoda Y & Yamada K (1968) Studies on tannin acyl hydrolase of microorganisms. Part III. Purification of the enzyme and some properties of it. Agric. Biol. Chem. 32: 803-809.

    Google Scholar 

  51. Iibuchi S, Minoda Y & Yamada, K ( 1972) Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase of Asp. oryzaeNo.7. Agric. Biol. Chem. 37: 1553-1562.

    Google Scholar 

  52. Jones GA, McAllister TA, Muir AD & Cheng, KJ (1994) Effects of sainfoin (Onobrychis viciifoliaScop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl. Environ. Microbiol. 60: 1374-1378.

    Google Scholar 

  53. Kaiser JP & Hanselmann KW (1982) Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments. Arch. Microbiol. 133: 185-194.

    Google Scholar 

  54. Knudson L (1913) Tannic acid fermentation. J. Biol. Chem. 14: 159-202.

    Google Scholar 

  55. Kumar R & Singh M (1984) Tannins: their adverse role in ruminant nutrition. J. Agric. Food Chem. 32: 447-453.

    Google Scholar 

  56. Krumholz LR & Bryant MP (1986a) Syntrophococcus sucromutanssp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxybenzenoids or Methanobrevibacteras electron acceptor systems. Arch. Microbiol. 143: 313-318.

    Google Scholar 

  57. Krumholz LR & Bryant MP (1986b) Eubacterium oxidoreducenssp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch. Microbiol. 144: 8-14.

    Google Scholar 

  58. Krumholz LR, Crawford RL, Hemling ME & Bryant MP (1987) Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducensvia 3-hydroxy-5-oxohexanoate. J. Bacteriol. 169: 1886-1890.

    PubMed  Google Scholar 

  59. Krumholz LR & Bryant MP (1988) Characterization of the pyrogallol-phloroglucinol isomerase of Eubacterium oxidoreducens.J. Bacteriol. 170: 2472-2479.

    PubMed  Google Scholar 

  60. Lane RW, Yamakoshi J, Kikuchi M, Mizusawa K, Henderson L & Smith M (1997) Safety evaluation of tannase enzyme preparation derived from Aspergillus oryzae.Food Chem. Toxicol. 35: 207-212.

    Article  PubMed  Google Scholar 

  61. Lekha PK & Lonsane BK (1994) Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus nigerPKL 104 in solid-state, liquid surface and submerged fermentations. Process Biochem. 29: 497-503.

    Article  Google Scholar 

  62. Lekha PK & Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv. Appl. Microbiol. 44: 215-260.

    PubMed  Google Scholar 

  63. Lewis JA & Starkey RL (1969) Decomposition of plant tannins by some soil microorganisms. Soil Sci. 107: 235-241.

    Google Scholar 

  64. Lorusso L, Lacki K & Duvnjak Z (1996) Decrease of tannin content in canola meal by an enzyme preparation from Trametes versicolor.Biotechnol. Lett. 18: 309-314.

    Article  Google Scholar 

  65. Mahadevan A & Muthukumar G (1980) Aquatic microbiology with reference to tannin degradations. Microbiologia 72: 73-79.

    Google Scholar 

  66. Mahadevan A & Sivaswamy SN (1985) Tannins and microorganisms. In: Mukerji KG, Pathak NC & Singh VP (Eds) Frontiers in applied microbiology. (pp. 327-347). Print House, Lucknow.

    Google Scholar 

  67. Makkar HPS, Singh B & Kamra DN (1994) Biodegradation of tannins in oak (Quercus incana) leaves by Sporotrichum pulverulentum.Lett. Appl. Microbiol. 18: 39-41.

    Google Scholar 

  68. Makkar HPS, Singh B & Dawra RK (1988) Effect of tannin-rich leaves of oak (Quercus incana) on various microbial enzyme activities of the bovine rumen. Brit. J. Nutr. 60: 287-296.

    PubMed  Google Scholar 

  69. Martin SA & Akin DE (1988) Effect of phenolic monomers on the growth and β-glucosidase activity of Bacteroides ruminicolaand on the carboxymethylcellulase, β-glucosidase, and xylanase activities of Bacteroides succinogenes.Appl. Environ. Microbiol 54: 3600-3604.

    Google Scholar 

  70. McLeod MN (1974) Plant tannins - their role in forage quality. Nutr. Abstr. Rev. 44: 803-815.

    Google Scholar 

  71. Mueller-Harvey I, Reed JD & Hartley RD (1987) Characterization of phenolic compounds, including tannins of ten Ethiopian browse species by high performance liquid chromatography. J.Sci. Food Agric. 39: 1-14.

    Google Scholar 

  72. Mueller-Harvey I & McAllan AB (1992) Tannins: their biochemistry and nutritional properties. Adv. Plant Cell Biochem. Biotechnol. 1: 151-217.

    Google Scholar 

  73. Murdiati TB, McSweeney CS & Lowry JB (1992) Metabolism in sheep of gallic acid, tannic acid, and hydrolysable tannins from Terminalia oblongata.Aust. J. Agric. Res. 43: 1307-1312.

    Google Scholar 

  74. Nelson KA, Schofield P & Zinder S (1995) Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolysable tannins. Appl. Environ. Microbiol. 61: 3293-3298.

    PubMed  Google Scholar 

  75. Nishira H (1961) Studies on tannin decomposing enzyme of molds. X. Tannase fermentation by molds in liquid culture with phenolic substances. J. Ferment. Technol. 39: 137-146.

    Google Scholar 

  76. Osawa R (1990) Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcussp. isolated from feces of koalas. Appl. Environ. Microbiol. 56: 829-831.

    PubMed  Google Scholar 

  77. Osawa R (1992) Tannin-protein complex-degrading enterobacteria isolated from the alimentary tracts of koalas and a selective medium for their enumeration. Appl. Environ. Microbiol. 58: 1754-1759.

    PubMed  Google Scholar 

  78. Osawa R & Mitsuoka T (1990) Selective medium for enumeration of tannin-protein complex-degrading Streptococcusspp. in feces of koalas. Appl. Environ. Microbiol. 56: 3609-3611.

    Google Scholar 

  79. Osawa R & Sly L (1992) Occurence of tannin-protein complex-degrading Streptococcussp. in feces of various animals. System. Appl. Microbiol. 15: 144-147.

    Google Scholar 

  80. Otuk G & Deschamps AM (1983) Degradation of condensed tannin by several types of yeasts. Mycopathologia 83: 107-111.

    Google Scholar 

  81. Patel TR, Jure KG & Jones GA (1981) Catabolism of phloroglucinol by the rumen anaerobe Coprococcus.Appl. Environ. Microbiol. 42: 1010-1017.

    Google Scholar 

  82. Patel TR, Hameed N & Martin AM (1990) Initial steps of phloroglucinol metabolism in Penicillium simplicissimum.Arch. Microbiol. 153: 438-443.

    Article  Google Scholar 

  83. Perez-Maldonado RA & Norton BW (1996) Digestion of 14C-labelled condensed tannins from Desmodium intortumin sheep and goats. Brit. J. Nutr. 76: 501-513.

    PubMed  Google Scholar 

  84. Porter LJ (1994) Flavans and proanthocyanidins. In: Harborne JB (Ed.) The Flavanoids Advances in Research since 1986 (pp. 23-48) Chapman and Hall, London.

    Google Scholar 

  85. Rajakumar GS & Nandy SC (1983) Isolation, purification, and some properties of Penicillium chrysogenumtannase. Appl. Environ. Microbiol. 46: 525-527.

    Google Scholar 

  86. Reed JD (1995) Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Anim. Sci. 73: 1516-1528.

    PubMed  Google Scholar 

  87. Saxena RK, Sharmila P & Singh VP (1995) Microbial degradation of tannins. In: Singh VP (Ed) Biotransformations: Microbial degradation of health-risk compounds. Progress in Industrial Microbiology, Vol. 32 (pp. 259-270). Elsevier Science Publishers B. V. Amsterdam.

    Google Scholar 

  88. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30: 3875-3883.

    Article  Google Scholar 

  89. Schink B & Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallicigen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133: 195-201.

    Google Scholar 

  90. Selinger LB, Forsberg CW & Cheng KJ (1996) The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe 2: 263-284.

    Article  Google Scholar 

  91. Skene IK & Brooker JD (1995) Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium.Anaerobe, 1: 321-327.

    Article  Google Scholar 

  92. Spencer CM, Cai Y, Martin R, Gaffney SH, Goulding PN, Magnolato D, Lilley TH & Haslam E (1988). Polyphenol complexation- some thoughts and observations. Phytochemistry 27: 2397-2409.

    Article  Google Scholar 

  93. Suseela RG & Nandy SC (1985) Decomposition of tannic acid and gallic acid by Penicillium chrysogenum.Leather Sci. 32: 278-280.

    Google Scholar 

  94. Thomas RL & Murtagh K (1985) Characterization of tannase (EC 3.1.1.20) activity in tea extracts. J. Food Sci. 50: 1126-1129.

    Google Scholar 

  95. Tsai CG & Jones GA (1975) Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation. Can. J. Microbiol. 21: 794-801.

    PubMed  Google Scholar 

  96. Tsai CG, Gates DM, Ingledew WM & Jones GA (1976) Products of anaerobic phloroglucinol degradation by Coprococcussp. Pe1 5. Can. J. Microbiol. 22: 159-164.

    PubMed  Google Scholar 

  97. Tschech A & Schink B (1985) Fermentative degradation of resorcinol and resorcylic acids. Arch. Microbiol. 143: 52-59.

    Google Scholar 

  98. Van Buren JP & Robinson WB (1969) Formation of complexes between protein and tannic acid. J. Agric. Food Chem. 17: 772-777.

    Google Scholar 

  99. Vennat B, Pourrat A & Pourrat H (1986) Production of a depolymerized tannin extract using a strain of Saccharomyces rouxii.J. Ferment Technol. 64: 227-232.

    Article  Google Scholar 

  100. William F, Boominathan K, Vasudevan N, Gurujeyalakshmi G & Mahadevan A (1986) Microbial degradation of lignin and tannin. J. Sci. Ind. Res. 45: 232-243.

    Google Scholar 

  101. Watanabe A (1965) Studies on the metabolism of gallic acid by microorganisms. Part 3. Onthe intermediary metabolism of gallic acid by Aspergillus niger.Agric. Biol. Chem. 29: 20-26.

    Google Scholar 

  102. Yamada H, Adachi O, Watanabe M & Sato N (1968a) Studies of fungal tannase. Part I. Formation, purification and catalytic properties of tannase of Aspergillus flavus. Agric. Biol. Chem. 32: 1070-1078.

    Google Scholar 

  103. Yamada H, Adachi O, Watanabe M & Ogata K (1968b) Tannase (tannin acyl hydrolase), a typical serine esterase. Agric. Biol. Chem. 32: 257-258.

    Google Scholar 

  104. Yamada H, Iibuchi S & Minoda Y (1967) Studies on tannin acyl hydrolase of microorganisms. Part I. Isolation and identification of producing molds and studies on the conditions of cultivation. J. Ferment. Technol. 45: 233-240.

    Google Scholar 

  105. Young LY (1984) Anaerobic degradation of aromatic compounds. In: Gibson DT (Ed) Microbial degradation of organic compounds (pp. 487-523). Marcel Dekker Inc., New York.

    Google Scholar 

  106. Zhu J, Fillipich LJ & Ng J (1995) Rumen involvement in sheep tannic acid metabolism. Vet. Human Toxicol. 37: 436-440.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bhat, T.K., Singh, B. & Sharma, O.P. Microbial degradation of tannins – A current perspective. Biodegradation 9, 343–357 (1998). https://doi.org/10.1023/A:1008397506963

Download citation

  • biodegradation
  • condensed tannins
  • gallic acid
  • hydrolysable tannins
  • quercetin
  • rumen
  • tannase
  • tannins