Skip to main content
Log in

Equilateral Dimension of the Rectilinear Space

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Itis conjectured that there exist at most 2k equidistantpoints in the k-dimensional rectilinear space.This conjecture has been verified for k ≤ 3; we show here its validity in dimension k = 4. We alsodiscuss a number of related questions. For instance, what isthe maximum number of equidistant points lying in the hyperplane:\(\sum\nolimits_{i = 1}^k {x_i } = 0?\) If this number would be equal to k, then the above conjecture would follow. Weshow, however, that this number is ≥ k + 1 for k ≥ 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-J. Bandelt, V. Chepoi and M. Laurent, Embedding into rectilinear spaces, Discrete and Computational Geometry, Vol. 19 (1998) pp. 595–604.

    Google Scholar 

  2. L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press, Oxford (1953).

    Google Scholar 

  3. L. Danzer and B. Grünbaum, Ñber zwei Probleme bezüglich knovexer Körper von P. Erdös und von V. L. Klee, Mathematische Zeitschrift, Vol. 79 (1962) pp. 95–99.

    Google Scholar 

  4. L. Danzer, B. Grünbaum and V. Klee, Helly' theorem and its relatives, Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, Rhodes Island, VII (1963) pp. 101–181.

    Google Scholar 

  5. N. G. de Bruijn and P. Erdös, On a combinatorial problem, Indagationes Mathematicae, Vol. 10 (1948) pp. 421–423.

    Google Scholar 

  6. M. Deza and M. Laurent, Geometry of cuts and metrics, Algorithms and Combinatorics, Springer Verlag, Berlin, 15 (1997).

    Google Scholar 

  7. B. Fichet, Dimensionality problems in L1-norm representations, Classification and Dissimilarity Analysis, Lecture Notes in Statistics, Springer-Verlag, Berlin, 93 (1994) pp. 201–224.

    Google Scholar 

  8. T. Fleiner, Covering a symmetric poset by symmetric chains, Combinatorica, Vol. 17 (1997) pp. 339–344.

    Google Scholar 

  9. Z. Füredi, J. C. Lagarias, and F. Morgan, Singularities of minimal surfaces and networks and related extremal problems in Minkowski space, Discrete and Computational Geometry (J. E. Goodman et al.,eds.) Vol. 6 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science (1991) pp. 95–109.

  10. H. Groemer, Abschätzungen für die Anzahl der knovexen Körper die einen konvexen Körper berühren, Monatshefte für Mathematik, Vol. 65 (1961) pp. 74–81.

    Google Scholar 

  11. B. Grünbaum, On a conjecture of H. Hadwiger, Pacific Journal of Mathematics, Vol. 11 (1961) pp. 215–219.

    Google Scholar 

  12. R. K. Guy and R. B. Kusner, An olla podrida of open problems, often oddly posed, American Mathematical Monthly, Vol. 90 (1983) pp. 196–199.

    Google Scholar 

  13. F. Hadlock and F. Hoffman, Manhatten trees, Utilitas Mathematica, Vol. 13 (1978) pp. 55–67.

    Google Scholar 

  14. H. Hadwiger, Ueber Treffanzahlen bei translationsgleichen Eikörpern, Archiv der Mathematik, Vol. 8 (1957) pp. 212–213.

    Google Scholar 

  15. G. R. Lawlor and F. Morgan, Paired calibrations applied to soap films, immiscible fluids, and surfaces and networks minimizing other norms, Pacific Journal of Mathematics, Vol. 166 (1994) pp. 55–82.

    Google Scholar 

  16. P. W. H. Lemmens and J. J. Seidel, Equiangular sets of lines, Journal of Algebra, Vol. 24 (1973) pp. 494–512.

    Google Scholar 

  17. F. Morgan, Minimal surfaces, crystals, networks, and ungraduate research, Mathematical Intelligencer, Vol. 14 (1992) pp. 37–44.

    Google Scholar 

  18. C. M. Petty, Equilateral sets in Minkowski spaces, Proceedings of the American Mathematical Society, Vol. 29 (1971), pp. 369–374.

    Google Scholar 

  19. K. J. Swanepoel, Extremal problems in Minkowski space related to minimal networks, Proceedings of the American Mathematical Society, Vol. 124 (1996) pp. 2513–2518.

    Google Scholar 

  20. K. J. Swanepoel, Cardinalities of k-distance sets in Minkowki spaces, Technical report UPWT 97/4, University of Pretoria (1997).

  21. H. P. F. Swinnerton-Dyer, Extremal lattices of convex bodies, Proceedings of the Cambridge Philosophical Society, Vol. 49 (1953) pp. 161–162.

    Google Scholar 

  22. I. Talata, Exponential lower bound for the translative kissing numbers of d-dimensional convex bodies, Discrete and Computational Geometry, Vol. 19 (1998) pp. 447–455.

    Google Scholar 

  23. I. Talata, The translative kissing number of tetrahedra is 18, Discrete and Computational Geometry, Vol. 22 (1999) pp. 231–248.

    Google Scholar 

  24. A. C. Thompson, Minkowski Geometry, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 63 (1996).

  25. J. H. van Lint and J. J. Seidel, Equilateral point sets in elliptic geometry, Indagationes Mathematicae, Vol. 28 (1966) pp. 335–348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koolen, J., Laurent, M. & Schrijver, A. Equilateral Dimension of the Rectilinear Space. Designs, Codes and Cryptography 21, 149–164 (2000). https://doi.org/10.1023/A:1008391712305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008391712305

Navigation