Skip to main content

41 is the Largest Size of a Cap in PG(4,4)

Abstract

We settle the question of the maximal size of caps in PG(4, 4), with the help of a computer program.

This is a preview of subscription content, access via your institution.

References

  1. E. Artin, Geometric Algebra, Interscience Publishers, New York, London (1957).

    Google Scholar 

  2. J. Bierbrauer, The uniformly 3-homogeneous subsets of P GL (2, q), Journal of Algebraic Combinatorics, Vol. 4 (1995) pp. 99-102.

    Google Scholar 

  3. A. E. Brouwer, Data base of bounds for the minimum distance for binary, ternary and quaternary codes, URL http://www.win.tue.nl/win/math/dw/voorlincod.html or URL http://www.cwi.nl/htbin/aeb/lincodbd/2/136/114 or URL ftp://ftp.win.tue.nl/pub/math/codes/table[234].gz.

  4. G. Faina and F. Pambianco, On the spectrum of the values k for which a complete k-cap in P G(n, q) exists, Journal of Geometry, to appear.

  5. R. Hill, On the largest size of cap in S 5,3, Atti Accad. Naz. Lincei Rendiconti, Vol. 54 (1973) pp. 378-384.

    Google Scholar 

  6. G. Pellegrino, Sul massimo ordine delle calotte in S 4,3, Matematiche (Catania), Vol. 25 (1970) pp. 1-9.

    Google Scholar 

  7. G. Tallini, Calotte complete di S 4,q contenenti due quadriche ellittiche quali sezioni iperpiane, Rend. Mat e Appl., Vol. 23 (1964) pp. 108-123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Edel, Y., Bierbrauer, J. 41 is the Largest Size of a Cap in PG(4,4). Designs, Codes and Cryptography 16, 151–160 (1999). https://doi.org/10.1023/A:1008389013117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008389013117

  • caps
  • codes
  • projective spaces
  • ovoids
  • projective groups