Skip to main content
Log in

Isopropylbenzene catabolic pathway in Pseudomonas putida RE204: nucleotide sequence analysis of the ipb operon and neighboring DNA from pRE4

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Pseudomonas putida RE204 employs a set of plasmid-specified enzymes in the catabolism of isopropylbenzene (cumene) and related alkylbenzenes. A 21,768 bp segment of the plasmid pRE4, whose sequence is discussed here, includes the ipb (isopropylbenzene catabolic) operon as well as associated genetic elements. The ipb operon, ipbAaAbAcAdBCEGFHD, encodes enzymes catalyzing the conversion of isopropylbenzene to isobutyrate, pyruvate, and acetyl-coenzyme A as well as an outer membrane protein (IpbH) of uncertain function. These gene products are 75 to 91% identical to those encoded by other isopropylbenzene catabolic operons and are somewhat less similar to analogous proteins of related pathways for the catabolism of mono-substituted benzenes. Upstream of ipbAa, ipbR encodes a positive regulatory protein which has about 56% identity to XylS regulatory proteins of TOL (xylene/toluate) catabolic plasmids. This similarity and that of the DNA sequence in the proposed ipb operator-promoter region (ipbOP) to the same region of the xyl meta operon (xylOmPm) suggest that, although the IpbR and XylS regulatory proteins recognize very different inducers, their interactions with DNA to activate gene expression are similar. Upstream of ipbR is an 1196 bp insertion sequence, IS1543, related to IS52 and IS1406. Separating ipbR from ipbAa are 3 additional tightly clustered IS elements. These are IS1544, related to IS1543, IS52, and other members of the IS5 family; IS1545, related to IS1240; and IS1546, related to IS1491. Encompassing the ipb catabolic genes and the other genetic elements and separated from each other by 18,492 bp, are two identical, directly repeated 1007 bp DNA segments. Homologous recombination between these segments appears to be responsible for the occasional deletion of the intervening DNA from pRE4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed A (1984) Use of transposon-promoted deletions in DNA sequence analysis. J. Mol. Biol. 178: 941- 948

    Google Scholar 

  • Alting-Mees MA & Short JM (1989) pBluescript II: gene mapping vectors. Nucleic Acids Res. 17: 9494

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403- 410

    Google Scholar 

  • Aoki H, Kimura T, Habe H, Yamane H, Kodama T & Omori T (1996) Cloning, nucleotide sequence, and characterization of the genes encoding enzymes involved in the degradation of cumene to 2-hydroxy-6-oxo-7-methylocta-2,4-dienoic acid in Pseudomonas fluorescens IP01. J. Ferment. Bioeng. 81: 187- 196

    Google Scholar 

  • Assinder SJ, De Marco P, Osborne DJ, Poh CL, Shaw LE, Winson MK & Williams PA (1993) A comparison of the multiple alleles of xylS carried by TOL plasmids pWW53 and pDK1 and its implications for their evolutionary relationship. J. Gen. Microbiol. 139: 557- 568

    Google Scholar 

  • Benson D, Lipman DJ & Ostell J (1993) GenBank. Nucleic Acids Res. 21: 2963- 2965

    Google Scholar 

  • Beltrametti F, Marconi AM, Bestetti G, Colombo C, Galli E, Ruzzi M & Zennaro E (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl. Environ. Microbiol. 63: 2232- 2239.

    Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Callado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B & Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453- 1474

    Google Scholar 

  • Brennan RG & Matthews BW (1989) The helix-turn-helix DNA binding motif. J. Biol. Chem. 264: 1903- 1906

    Google Scholar 

  • Brunelle A & Schleif R (1989) Determining residue-base interactions between AraC protein and araI DNA. J. Mol. Biol. 209: 607- 622

    Google Scholar 

  • Cass LG & Wilcox G (1986) Mutations in the araC regulatory gene of Escherichia coli B/r that affect repressor and activator functions of AraC protein. J. Bacteriol. 166: 892- 900

    Google Scholar 

  • Chow LT & Broker TR (1978) Adjacent insertion sequences IS2 and IS5 in bacteriophage Mu mutants and an IS5 in a lambda darg bacteriophage. J. Bacteriol. 133: 1427- 1436

    Google Scholar 

  • Dabrock B, Keß eler M, Averhoff B & Gottschalk G (1994) Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethylene catabolism. Appl. Environ. Microbiol. 60: 853- 860.

    Google Scholar 

  • Dabrock B, Riedel J, Bertram J & Gottschalk G (1992) Isopropylbenzene (cumene) - a new substrate for the isolation of trichloroethylene-degrading bacteria. Arch. Microbiol. 158: 9- 13

    Google Scholar 

  • Denome SA, Stanley DC, Olson ES & Young KD (1993) Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J. Bacteriol. 175: 6890- 6901

    Google Scholar 

  • Eaton RW (1994) Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid. J. Bacteriol. 176: 7757- 7762

    Google Scholar 

  • Eaton RW (1997) p-Cymene pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding the conversion of p-cymene to p-cumate. J. Bacteriol. 179: 3171- 3180

    Google Scholar 

  • Eaton RW & Nitterauer JD (1994) Biotransformation of benzothiophene by isopropylbenzene-degrading bacteria. J. Bacteriol. 176: 3992- 4002

    Google Scholar 

  • Eaton RW & Selifonov SA (1996) Biotransformation of 6,6-dimethylfulvene by Pseudomonas putida RE213. Appl. Environ. Microbiol. 62: 756- 760

    Google Scholar 

  • Eaton RW & Timmis KN (1984) The genetics of xenobiotic degradation. In Klug MJ & Reddy CA (Ed) Current Perspectives in Microbial Ecology (pp 694- 703). American Society for Microbiology, Washington

    Google Scholar 

  • Eaton RW & Timmis KN (1986a) Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204. J. Bacteriol. 168: 123- 131

    Google Scholar 

  • Eaton RW & Timmis KN (1986b) Spontaneous deletion of a 20-kilobase DNA segment carrying genes specifying isopropylbenzene metabolism in Pseudomonas putida RE204. J. Bacteriol. 168: 428- 430

    Google Scholar 

  • Ensley BD, Osslund TD, Joyce M & Simon MJ (1988) Expression and complementation of naphthalene dioxygenase activity in Escherichia coli. In Hagedorn SR, Hanson RS & Kunz DA (Ed) Microbial Metabolism and the Carbon Cycle (pp 437- 455). Harwood Academic Publishers, New York

    Google Scholar 

  • Erickson BD & Mondello FJ (1993) Nucleotide sequencing and transcriptional mapping of biphenyl dioxygenase, a multicomponent PCB-degrading enzyme in Pseudomonas strain LB400. J. Bacteriol. 174: 2903- 2912

    Google Scholar 

  • Fontecave M, Coves J & Pierre J-L (1994) Ferric reductases or flavin reductases? Biometals 7: 3- 8

    Google Scholar 

  • Francklyn CS & Lee N (1988) AraC proteins with altered DNA sequence specificity which activate a mutant promoter in Escherichia coli. J. Biol. Chem. 263: 4400- 4407

    Google Scholar 

  • Furukawa K (1994) Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation 5: 289- 300

    Google Scholar 

  • Gallegos MT, Marqués S, & Ramos JL (1996) The TACAN4TGCA motif upstream from the-35 region in the σ70S-dependent Pm promoter of the TOL plasmid is the minimum DNA segment required for transcription stimulation by XylS regulators. J. Bacteriol. 178: 6427- 6434

    Google Scholar 

  • Gallegos M-T, Michán C & Ramos JL (1993) The XylS/AraC family of regulators. Nucleic Acids Res. 21: 807- 810

    Google Scholar 

  • Gibson DT & Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (Ed), Microbial Degradation of Organic Compounds (pp 181- 252). Marcel Dekker, Inc., New York

    Google Scholar 

  • Habe H, Kasuga K, Nojiri H, Yamane H & Omori T (1996a) Analysis of cumene (isopropylbenzene) degradation genes from Pseudomonas Fluorescens IP01. Appl. Environ. Microbiol. 62: 4471–4477

    Google Scholar 

  • Habe H, Kimura T, Nojiri H, Yamane H & Omori T (1996b) Cloning and nucleotide sequences of the genes involved in the meta-cleavage pathway of cumene degradation in Pseudomonas fluorescens IP01. J. Ferment. Bioeng. 81: 247- 254

    Google Scholar 

  • Hänni C, Meyer J, Iida S, & Arber W (1982) Occurrence and properties of composite transposon Tn2672: evolution of multiple drug resistance transposons. J. Bacteriol. 150: 1266- 1273

    Google Scholar 

  • Harrison SC & Aggarwal AK (1990) DNA recognition by proteins with the helix-turn-helix motif. Annu. Rev. Biochem. 59: 933- 969

    Google Scholar 

  • Hofer B, Backhaus S & Timmis KN (1994) The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene 144: 9- 16

    Google Scholar 

  • Hofer B, Eltis LD, Dowling DN & Timmis KN (1993) Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130: 47- 55

    Google Scholar 

  • Horn JM, Harayama S & Timmis KN (1991) DNA sequence determination of the TOL plasmid (pWW0) xylGFJ genes of Pseudomonas putida: implications for the evolution of aromatic catabolism. Mol. Microbiol. 5: 2459- 2474

    Google Scholar 

  • Iida S, Meyer J & Arber W (1983) Prokaryotic IS elements. In: Shapiro JA (Ed) Mobile Genetic Elements (pp 159- 221). Academic Press, New York

    Google Scholar 

  • Inouye S, Nakazawa A & Nakazawa T (1986) Nucleotide sequence of the regulatory gene xylS on the Pseudomonas putida TOL plasmid and identification of the protein product. Gene 44: 235- 242

    Google Scholar 

  • Jiang H, Parales RE, Lynch NA & Gibson DT (1996) Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites. J. Bacteriol. 178: 3133- 3139

    Google Scholar 

  • Jilk RA, Makris JC, Borchardt L & Reznikoff WS (1993) Implications of Tn5-associated adjacent deletions. J. Bacteriol. 175: 1264- 1271

    Google Scholar 

  • Kessler B, de Lorenzo V & Timmis KN (1993) Identification of a cis-acting sequence within the Pm promoter of the TOL plasmid which confers XylS-mediated responsiveness to substituted benzoates. J. Mol. Biol. 230: 699- 703

    Google Scholar 

  • Kessler B, Timmis KN & de Lorenzo V (1994) The organization of the Pm promoter of the TOL plasmid reflects the structure of its cognate activator protein XylS. Mol. Gen. Genet. 244: 596- 605

    Google Scholar 

  • Kivisaar M, Kasak L & Nurk A (1991) Sequence of the plasmid-encoded catechol 1,2-dioxygenase gene, pheB, of phenoldegrading Pseudomonas sp. strain EST1001. Gene 98: 15- 20

    Google Scholar 

  • Kroger M & Hobom G (1982) Structural analysis of insertion sequence IS5. Nature 297: 159- 162

    Google Scholar 

  • Kurkela S, Levaslaiho H, Plava ET & Teeri TH (1991) Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida NCIB9816. Gene 73: 355- 362

    Google Scholar 

  • Lau PCK, Bergeron H, Labbé D, Wang Y, Brousseau R, & Gibson DT (1994) Sequence and expression of the todGIH genes involved in the last three steps of toluene degradation by Pseudomonas putida F1. Gene 146: 7- 13

    Google Scholar 

  • Maniatis T, Fritsch EF & Sambrook J (1982) Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Menn F-M, Zylstra GJ & Gibson DT (1991) Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1. Gene 104: 91- 94

    Google Scholar 

  • Michán C, Kessler B, de Lorenzo V, Timmis KN & Ramos JL (1992a) XylS domain interactions can be deduced from intraallelic dominance in double mutants of Pseudomonas putida. Mol. Gen. Genet. 235: 406- 412

    Google Scholar 

  • Michan C, Zhou L, Gallegos M-T, Timmis KN & Ramos JL (1992b) Identification of critical amino-terminal regions of XylS, the positive regulator encoded by the TOL plasmid. J. Biol. Chem. 267: 22897- 22901

    Google Scholar 

  • Morales VM, Bäckman A & Bagdasarian M (1991) A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97: 39- 47

    Google Scholar 

  • Needleman SB & Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48: 443- 453

    Google Scholar 

  • Nordlund I & Shingler V (1990) Nucleotide sequences of the meta-cleavage pathway enzymes 2-hydroxymuconic semialdehyde dehydrogenase and 2-hydroxymuconic semialdehyde hydrolase from Pseudomonas CF600. Biochim. Biophys. Acta 1049: 227- 230

    Google Scholar 

  • Pflugmacher U, Averhoff B & Gottschalk G (1996) Cloning, sequencing, and expression of isopropylbenzene degradation genes from Pseudomonas sp. strain JR1: identification of isopropylbenzene dioxygenase that mediates trichloroethylene oxidation. Appl. Environ. Microbiol. 62: 3967- 3977

    Google Scholar 

  • Platt A, Shingler V, Taylor SC & Williams PA (1995) The 4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase (acylating) encoded by the nahM and nahO genes of the naphthalene catabolic plasmid pWW60-22 provide further evidence of conservation of meta-cleavage pathway gene sequences. Microbiology 141: 2223- 2233

    Google Scholar 

  • Radke M (1987) Organic geochemistry of aromatic hydrocarbons. Adv. Petroleum Geochem. 2: 141- 207

    Google Scholar 

  • Ramos JL, Michán C, Rojo F, Dwyer D & Timmis KN (1990a) Signal-regulator interactions. Genetic analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. J. Mol. Biol. 211: 373- 382

    Google Scholar 

  • Ramos JL, Rojo F, Zhou L & Timmis KN (1990b) A family of positive regulators related to the Pseudomonas putida TOL plasmid XylS and the Escherichia coli AraC activators. Nucleic Acids Res. 18: 2149- 2152

    Google Scholar 

  • Ramos JL, Stolz A, Reineke W & Timmis KN (1986) Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc. Natl. Acad. Sci. USA 83: 8467- 8471

    Google Scholar 

  • Ribbons DW & Eaton RW (1982) Chemical transformations of aromatic hydrocarbons that support the growth of microorganisms. In: Chakrabarty AM (Ed), Biodegradation and Detoxification of Environmental Pollutants (pp 59- 84). CRC Press, Boca Raton, FL

    Google Scholar 

  • Roberts DE, Ascherman D & Kleckner N (1991) IS10 promotes adjacent deletions at low frequency. Genetics 128: 37- 43

    Google Scholar 

  • Sanger F, Nicklen S & Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463- 5467

    Google Scholar 

  • Schmid-Appert M, Zoller K, Traber H, Vuilleumier S & Leisinger T (1997) Association of newly discovered IS elements with the dichloromethane utilization genes of methylotrophic bacteria. Microbiology 143: 2557- 2567

    Google Scholar 

  • Selifonova OV & Eaton RW (1996) Use of an ipb-lux fusion to study regulation of the isopropylbenzene catabolism operon of Pseudomonas putida RE204 and to detect hydrophobic pollutants in the environment. Appl. Environ. Microbiol. 62: 778- 783

    Google Scholar 

  • Shingler V, Powlowski J & Marklund U (1992) Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174: 711- 724

    Google Scholar 

  • Solinas F, Marconi AM, Ruzzi M & Zennaro E (1995) Characterization and sequence of a novel insertion sequence, IS1162, from Pseudomonas fluorescens. Gene 155: 77- 82

    Google Scholar 

  • Spooner RA, Lindsay K & Franklin FCH (1986) Genetic, functional, and sequence analysis of the xylR and xylS regulatory genes of the TOL plasmid pWW0. J. Gen. Microbiol. 132: 1347- 1358

    Google Scholar 

  • Wang Y, Rawlings M, Gibson DT, Labbé D, Bergeron H, Brousseau R & Lau PCK (1995) Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol. Gen. Genet. 246: 570- 579

    Google Scholar 

  • Wilbur WJ & Lipman DJ (1983) Rapid similarity searches of nucleic acid and protein data banks. Proc. Natl. Acad. Sci. USA 80: 726- 730

    Google Scholar 

  • Williams PA & Sayers JR (1994) The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation 5: 195- 217

    Google Scholar 

  • Wyndham RC, Cashore AE, Nakatsu CH & Peel M (1994) Catabolic transposons. Biodegradation 5: 323- 342

    Google Scholar 

  • Yamada T, Lee P-D & Kosuge T (1986) Insertion sequence elements of Pseudomonas savastanoi: nucleotide sequence and homology with Agrobacterium tumefaciens transfer DNA. Proc. Natl. Acad. Sci. USA 83: 8263- 8267

    Google Scholar 

  • Yanisch-Perron C, Viera J & Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103- 119

    Google Scholar 

  • Yeh WK, Gibson DT & Liu T-N (1977) Toluene dioxygenase: a multicomponent enzyme system. Biochem. Biophys. Res. Commun. 78: 401- 410

    Google Scholar 

  • Yen K-M & Karl MR (1992) Identification of a new gene, tmoF, in the Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol. 174: 7253- 7261

    Google Scholar 

  • Zhou L, Timmis KN & Ramos JL (1990) Mutations leading to constitutive expression from the TOL plasmid meta-cleavage pathway operon are located at the C-terminal end of the positive regulator protein XylS. J. Bacteriol. 172: 3707- 3710

    Google Scholar 

  • Zylstra GJ & Gibson DT (1989) Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J. Biol. Chem. 264: 14940- 14946

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaton, R.W., Selifonova, O.V. & Gedney, R.M. Isopropylbenzene catabolic pathway in Pseudomonas putida RE204: nucleotide sequence analysis of the ipb operon and neighboring DNA from pRE4. Biodegradation 9, 119–132 (1998). https://doi.org/10.1023/A:1008386221961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008386221961

Navigation