Skip to main content
Log in

Two-Weight Codes, Partial Geometries and Steiner Systems

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Two-weight codes and projectivesets having two intersection sizes with hyperplanes are equivalentobjects and they define strongly regular graphs. We construct projective sets in PG(2m − 1,q) that have the sameintersection numbers with hyperplanes as the hyperbolic quadricQ+(2m − 1,q). We investigate these sets; we provethat if q = 2 the corresponding strongly regular graphsare switching equivalent and that they contain subconstituentsthat are point graphs of partial geometries. If m = 4the partial geometries have parameters s = 7, t = 8,α = 4 and some of them are embeddable in Steinersystems S(2,8,120).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Brouwer, W. H. Haemers and V. D. Tonchev, Embedding partial geometries in Steiner designs, In Geometry, Combinatorial Designs and Related Structures (J. W. P. Hirschfeld, S. S. Magliveras, and M. J. de Resmini, eds.), Cambridge (1997) pp. 33–41.

  2. A. E. Brouwer, A. V. Ivanov and M. H. Klin, Some new strongly regular graphs, Combinatorica, Vol. 9 (1989) pp. 339–344.

    Google Scholar 

  3. A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., Vol. 18 (1986) pp. 97–122.

    Google Scholar 

  4. F. De Clerck, New partial geometries derived from old ones, Bull. Belg. Math. Soc.-Simon Stevin, Vol. 5 (1998) pp. 255–263.

    Google Scholar 

  5. F. De Clerck and M. Delanote, Partial geometries and the triality quadric, J. Geom., Vol. 68 (2000) pp. 34–47.

    Google Scholar 

  6. F. De Clerck, R. H. Dye and J. A. Thas, An infinite class of partial geometries associated with the hyperbolic quadric in PG(4n-1; 2), European J. Combin., Vol. 1 (1980) pp. 323–326.

    Google Scholar 

  7. F. De Clerck, H. Gevaert and J. A. Thas, Partial geometries and copolar spaces, In Combinatorics’ 88 (A. Barlotti, G. Lunardon, F. Mazzocca, N. Melone, D. Olanda, A. Pasini and G. Tallini, eds.) Rende (I) (1991) pp. 267–280.

  8. F. De Clerck, N. Hamilton, C. O'Keefe and T. Penttila, Quasi-quadrics and related structures, Australas. J. Combin., Vol. 22 (2000) pp. 151–166.

    Google Scholar 

  9. P. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Math., Vol. 3 (1972) pp. 47–64.

    Google Scholar 

  10. R. H. Dye, Partitions and their stabilizers for line complexes and quadrics, Ann. Mat. Pura Appl. (4), Vol. 114 (1977) pp. 173–194.

    Google Scholar 

  11. W. M. Kantor, Symplectic groups, symmetric designs and line ovals, J. Algebra, Vol. 33 (1975) pp. 43–58.

    Google Scholar 

  12. W. M. Kantor, Strongly regular graphs defined by spreads, Israel J. Math., Vol. 41 (1982) pp. 298–312.

    Google Scholar 

  13. M. H. Klin, On new partial geometries pg(8; 9; 4), Contributed talk, 16th British Combinatorial Conference (1998).

  14. R. Mathon and A. P. Street, Overlarge sets and partial geometries, J. Geom., Vol. 60, No. 1–2 (1997) pp. 85–104.

    Google Scholar 

  15. N. J. Patterson, A four-dimensional Kerdock set over GF(3), J. Combin. Theory Ser. A, Vol. 20 (1976) pp. 365–366.

    Google Scholar 

  16. J. J. Seidel, On two-graphs and Shult' characterization of symplectic and orthogonal geometries over GF(2), T.H.-Report 73-WSK-02, Tech. Univ. Eindhoven (1973).

  17. J. A. Thas, Some results on quadrics and a new class of partial geometries, Simon Stevin, Vol. 55 (1981) pp. 129–139.

    Google Scholar 

  18. V. D. Tonchev, Quasi-symmetric designs, codes, quadrics, and hyperplane sections, Geom. Dedicata, Vol. 48 (1993) pp. 295–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clerck, F.D., Delanote, M. Two-Weight Codes, Partial Geometries and Steiner Systems. Designs, Codes and Cryptography 21, 87–98 (2000). https://doi.org/10.1023/A:1008383510488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008383510488

Navigation