Skip to main content
Log in

Exceptional Families of Elements for Continuous Functions: Some Applications to Complementarity Theory

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Using the topological degree and the concept of exceptional family of elements for a continuous function, we prove a very general existence theorem for the nonlinear complementarity problem. This result is an alternative theorem. A generalization of Karamardian's condition and the asymptotic monotonicity are also introduced. Several applications of the main results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, M. (1957), A fixed point theorem in Hilbert space, Bull. Acad. Polon. Sci. 5: 19–22.

    Google Scholar 

  2. Carbone, A. and Isac, G. (1998), The generalized order complementarity problem. Applications to economics and an existence result, Nonlinear Studies 5(2): 139–152.

    Google Scholar 

  3. Cottle, R.W., Pang, J.S. and Stone, R.E. (1992), The Linear Complementarity Problem, Academic Press, New York.

    Google Scholar 

  4. Cottle, R.W. and Dantzig, G.B. (1970), A generalization of the linear complementarity problem, J. Combinatorial Theory 8: 79–90.

    Google Scholar 

  5. Ebiefung, A.A. (1995), Nonlinear mappings associated with the generalized linear complementarity problem, Math. Programming 69: 255–268.

    Google Scholar 

  6. Ebiefung, A.A. and Kostreva, M.M. (1993), The generalized Leontief input-output model and its application to the choice of new technology, Annals Oper. Res. 44: 161–172.

    Google Scholar 

  7. Fisher, M.L. and Tolle, J.W. (1977), The nonlinear complementarity problem: Existence and determination of solution, SIAM J. Control Opt. 15(4): 612–624.

    Google Scholar 

  8. Isac, G. (1988), Fixed point theorem coincidence equations on convex cones and complementarity problem, Contemporary Mathematics 72: 139–155.

    Google Scholar 

  9. Isac, G. (1992), Complementarity Problem, Lecture Notes in Mathematics 1528, Springer Verlag, Berlin/New York.

  10. Isac, G. (1995), On an Altman type fixed point theorem on convex cones, Rocky Mountain J. Math. 25(2): 701–714.

    Google Scholar 

  11. Isac, G., Bulavski, V. and Kalashnikov, V. (1997), Exceptional families, topological degree and complementarity problems, J. Global Opt. 10: 207–225.

    Google Scholar 

  12. Isac, G. and Obuchowska, W.T. (1998), Functions without exceptional families of elements and complementarity problem, J. Opt. Theory Appl. 99(1): 147–163.

    Google Scholar 

  13. Kalashnikov, V.V. (1995), Complementarity Problem and the Generalized Oligopoly Model, Habilitation Thesis, CEMI, Moscow (in Russian).

  14. Karamardian, S. (1971), Generalized complementarity problem, J. Optim. Theory Appl. 8(3): 161–168.

    Google Scholar 

  15. Lloyd, N.G. (1978), Degree Theory, Cambridge University Press.

  16. Moreau, J. (1962), Décomposition orthogonal d'une espace hilbertien selon deux cônes mutuellement polaire, C. R. Acad. Sci. Paris Tom A, 225: 238–240.

    Google Scholar 

  17. Mohan, S.R., Neogy, S.K. and Sridhar, R. (1996), The generalized linear complementarity problem revisited, Math. Programming 74: 197–218.

    Google Scholar 

  18. Moré, J.J. (1974), Coercivity conditions in nonlinear complementarity problems, SIAM Review 16(1): 1–16.

    Google Scholar 

  19. Moré, J.J. (1976), Classes of functions and feasibility conditions in nonlinear complementarity problems, Math. Programming 6: 327–338.

    Google Scholar 

  20. Moré, J.J. and Rheinboldt, W. (1973), On P and S-function and related classes of N-dimensional nonlinear mappings, Linear Algebra and its Applications, 6: 45–68.

    Google Scholar 

  21. Smith, T.E. (1984), A solution condition for complementarity problems with application to spatial price equilibrium, Applied Mathematics and Computation 15: 61–69.

    Google Scholar 

  22. Szanc, B.P. (1989), The Generalized Complementarity Problem, Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, New York.

  23. Sznajder, R. and Gowda, M.S. (1995), Generalization of P0-and P-properties; Extended vertical and horizontal linear complementarity problems, Linear Alg. Appl. 223/224: 695–715.

    Google Scholar 

  24. Vandeberge, L., De Moor, B.L. and Vandervalle, J. (1989), The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits, IEEE Trans. Circuits and Syst. 11: 1382–1391.

    Google Scholar 

  25. Zhao, Y.B. (1997), Exceptional families and finite-dimensional variational inequalities over polyhedral convex sets, Appl. Math. Computation 87: 111–126.

    Google Scholar 

  26. Zhao, Y.B., Han, J.Y. and Qi, H.D. (1997), Exceptional families and existence theorems for variational inequality problems (Preprint, Institute of Appl. Math. Academia SINICA, Beijing).

  27. Zhao, Y.B., Han, J.Y. (1997), Exceptional family for variational inequality problem and its applications (Preprint, Institute of Appl. Math. Academia SINICA, Beijing).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isac, G., Carbone, A. Exceptional Families of Elements for Continuous Functions: Some Applications to Complementarity Theory. Journal of Global Optimization 15, 181–196 (1999). https://doi.org/10.1023/A:1008376709933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008376709933

Navigation